首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi‐walled carbon nanotube (MWCNT) filters have been recently synthesised which have specific molecular filtering capabilities and good mechanical strength. Optical and scanning electron microscopy (SEM) reveals the formation of highly aligned arrays of bundles of carbon nanotubes having lengths up to 500 µm. The Raman spectra of this material along with four other carbonaceous materials, commercially available single‐walled carbon nanotubes (SWCNTs) and MWCNTs, graphitised porous carbon (Carbotrap) and graphite have been recorded using two‐excitation wavelengths, 532 and 785 nm, and analysed for band positions and shape with special emphasis paid to the D‐, G‐ and G′‐bands. A major difference between the different MWCNT varieties analysed is that G‐bands in the MWCNT filters exhibit almost no dispersion, whereas the other MWCNTs show a noticeable dispersive behaviour with a change in the excitation wavelength. Spectral features similar to those of the MWCNT filter varieties were observed for the Carbotrap material. From the line shape analysis, the intensity ratio, ID/IG, of the more ordered MWCNT filter material using the integral G‐band turns out to be two times lower than that of the less ordered MWCNT filter product at both excitation wavelengths. This parameter can, therefore, be used as a measure of the degree of MWCNT alignment in filter varieties, which is well supported also by our SEM study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Raman spectroscopic investigation on weak scatterers such as metals is a challenging scientific problem. Technologically important actinide metals such as uranium and plutonium have not been investigated using Raman spectroscopy possibly due to poor signal intensities. We report the first Raman spectrum of uranium metal using a surface‐enhanced Raman scattering‐like geometry where a thin gold overlayer is deposited on uranium. Raman spectra are detected from the pits and scratches on the sample and not from the smooth polished surface. The 514.5‐ and 785‐nm laser excitations resulted in the Raman spectra of uranium metal whereas 325‐nm excitation did not give rise to such spectra. Temperature dependence of the B3g mode at 126 cm−1 is also investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Raman spectroscopy is widely used for the characterization of bonding type in carbon‐based materials, including carbonized surface layer in ion‐implanted polymers. Studies of the polarization properties of Raman scattering from amorphous carbonaceous materials, however, are very scarce. In this paper, we investigate the polarized Raman spectra of polymethylmethacrylate (PMMA) implanted with 50‐keV Si+ ions at fluences in the range 3.2 × 1014–1.0 × 1017 ions/cm2 and for different visible excitation wavelengths. The spectra of the implanted samples are dominated by the D‐ and G‐bands of sp2 carbon, which evidence strong carbonization of the ion‐modified layer. The multiwavelength excitation allowed us to resonantly probe the depolarization ratios for sp2 clusters of different sizes. We established that the depolarization ratio ρG of the G‐band correlates with the sp2 cluster size approaching the random orientation limit of 0.75 for the smallest clusters and a limiting value of 0.41 for the largest clusters. The experimental findings give evidence for a preferable orientation of the larger size clusters with their hexagonal planes perpendicular to the surface of the sample. A plausible explanation for such an arrangement is that the sp2 clusters form tile‐like arrangements along the ion tracks. This finding may give clues for understanding of the strong transconductance of the ion‐modified layer, and open prospects for the application of polarized Raman spectroscopy as a characterization tool for surface morphology in ion‐implanted materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Commercially available diarrhetic shellfish poisoning (DSP) marine toxins are limited to micrograms samples invisible to the naked eye or in small amounts of micromole concentration solutions that are not suitable for normal Raman spectroscopy. As the Raman‐derived techniques are increasingly employed in various detection schemes of harmful substances, Raman spectra of the target compounds are essential for molecular recognition, detection and sensing reasons. Using a new μ‐RIM™ stainless steel hydrophobic substrate, we recorded near‐infrared micro‐Raman spectrum of okadaic acid (OA), a DSP marine biotoxin from 75 µg recrystallized toxin after drop coating deposition. Excitation with the 785‐nm line allowed the recovery and assembling of the Raman spectrum over the 100–3200 cm−1 spectral range on several OA microparticles, while the 532‐nm line excited the fluorescence emission that hampered the Raman signal. Density functional theory calculations were conducted on the isolated species both in gas phase and in ethanol solution to accurately assess and interpret the experimentally observed Raman bands. A good correlation between the experimental and theoretical Raman bands allowed for a reliable vibrational Raman assignment. Owing to the molecular geometry with intramolecular hydrogen bonds, the CC conjugated systems together with the methyl groups exhibited dominant OA Raman bands. Unlike domoic acid, an amnesic shellfish poisoning toxin whose carboxyl group showed the most intense Raman band, OA Raman characteristic band was not assigned to carboxyl group. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The surface‐enhanced Raman scattering (SERS) of sodium alginates and their hetero‐ and homopolymeric fractions obtained from four seaweeds of the Chilean coast was studied. Alginic acid is a copolymer of β‐D ‐mannuronic acid (M) and α‐L guluronic acid (G), linked 1 → 4, forming two homopolymeric fractions (MM and GG) and a heteropolymeric fraction (MG). The SERS spectra were registered on silver colloid with the 632.8 nm line of a He Ne laser. The SERS spectra of sodium alginate and the polyguluronate fraction present various carboxylate bands which are probably due to the coexistence of different molecular conformations. SERS allows to differentiate the hetero‐ and homopolymeric fractions of alginic acid by characteristic bands. In the fingerprint region, all the poly‐D ‐mannuronate samples present a band around 946 cm−1 assigned to C O stretching, and C C H and C O H deformation vibrations, a band at 863 cm−1 assigned to deformation vibration of β‐C1 H group, and one at 799–788 cm−1 due to the contributions of various vibration modes. Poly‐L ‐guluronate spectra show three characteristic bands, at 928–913 cm−1 assigned to symmetric stretching vibration of C O C group, at 890–889 cm−1 due to C C H, skeletal C C, and C O vibrations, and at 797 cm−1 assigned to α C1 H deformation vibration. The heteropolymeric fractions present two characteristic bands in the region with the more important one being an intense band at 730 cm−1 due to ring breathing vibration mode. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Raman spectroscopy based on the 1064‐nm laser excitation was suggested as a handy non‐invasive technique allowing to quickly determine sugar content in honey and similar food products. In the present study, the green 532‐nm laser radiation is explored instead as it provides higher‐quality spectra in a shorter time. The sample fluorescence was quenched by purification with activated carbon. For control mixture decomposition of Raman spectra to standard subspectra led to a typical error of the sugar content of 3%. Raman optical activity (ROA) spectra that could be measured at the shorter excitation wavelength as well provided a lower accuracy (~8%) than the Raman spectra because of instrumental sensitivity and noise limitations. The results show that Raman spectroscopy provides elegant and reliable means for fast analyses of sugar‐based food products. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Cobalt (Co) addition and thermal annealing induced structural and vibrational properties of ZnO nanostructures were analysed. X‐ray diffraction pattern reveals that the nanostructures are in hexagonal wurtzite type and the formation of Co3O4. The Co ion induced morphology changes have been studied by high‐resolution scanning electron microscope images and energy dispersive spectroscopy measurements confirm the presence of Co ions. CoO‐related magnon excitation bands are emerged at room temperature for the Co‐added samples. There are no changes in the band positions of the Raman spectra of pure and Co‐added materials. Annealed sample exhibits the suppression of magnon bands and formation of Co3O4: ZnO composites. Raman line width and the electron phonon coupling constant are decreased with respect to the annealing temperature. The formation of Co3O4 : ZnO composite phases have further confirmed by infrared spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Raman spectra were obtained for graphene after irradiating the samples by pulsed laser (λ = 248 nm). Changes in the spectra were observed as the pulse laser energy density (PLED) was varied from 0.1 to 0.25 J/cm2. Changes in bilayer graphene were accompanied by the appearance of the D peak and the broadening of the G peak. Changes in multilayer graphene are more profound as the Raman spectra changes from a multilayer to bilayer and subsequently to monolayer graphene in response to a slow increase in the PLED. The threshold PLED was found to be dependent on the number of graphene layers. We also irradiate graphene with very high PLED (much above the threshold), and the Raman spectra were found to be significantly changed. The G‐band became broader, and red shifted, while the intensity of the 2D‐band was drastically reduced and an intense defect‐related D peak appeared at about 1350 cm−1. The laser ablation of graphene, both with low‐ and high‐energy intensity, is consistent with the reported theoretical predictions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Surface‐enhanced Raman scattering from carbon nanotube bundles adsorbed with plasmon‐tunable Ag‐core Au‐shell nanoparticles (Ag@Au nps) was carried out for the first time. By utilizing nanoparticles whose plasmon resonance peak (541, 642 nm) closely matches the commonly used Raman excitation sources (532, 632.81 nm), we can observe a large enhancement in the Raman signatures of carbon nanotubes. We obtain greater enhancement in the Raman signal for the above case when compared to nanotubes adsorbed with conventional Ag, Au or other ‘off resonant’ Ag@Au nps. The power‐dependent SERS experiment on single‐walled nanotubes (SWNTs) with resonant Ag@Au nps reveals a linear behavior between the G‐band intensity and the photon flux density, which is in agreement with the vibrational pumping model of SERS. The observed enhancement by resonance matching is pronounced for carbon nanotubes and may lead to insights into understanding nanotube–nanoparticle interaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Two strong bands centered at 446 and 607 cm−1 have been observed in the FT‐Raman spectrum of almandine [Fe3Al2(SiO4)3] excited with 1064 nm, which were completely absent in the corresponding dispersive Raman spectra obtained using 488, 514.5 and 532 nm excitation. Furthermore, the mentioned strong bands have not been registered in the anti‐Stokes side of the FT‐Raman spectrum, and were therefore assigned to laser‐induced fluorescence bands. Their appearance is related to the presence of rare‐earth element traces as impurities in the almandine sample. Additionally, the FT‐Raman (and dispersive Raman) spectrum of the isomorphous spessartine [Mn3Al2(SiO4)3] mineral has been introduced, which did not show the presence of these fluorescence emission bands. The purity of the minerals was confirmed by study of their powder X‐ray diffraction (PXRD) patterns. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Raman spectra of TiO2 films prepared via the sol–gel process were studied by UV and visible Raman spectroscopy. The evolution of the phases of TiO2 films during annealing was investigated, and the relative intensities of the Raman bands excited with 325 nm were found to be distinct from those of the bands excited with 514 nm. The transmittance and FTIR spectra of the films annealed at different temperatures were characterized. The crystallization process of the powders and thin films treated by different annealing methods were also studied with Raman spectroscopy. The results show that the change in the relative intensities is caused by the resonance Raman effect. The anatase to rutile transition of the powder occurs at 700 °C, while that of the thin film occurs at 800 °C. The analysis of Raman band shape (peak position and full width at half‐maximum) after conventional furnace annealing and rapid thermal annealing indicates the influence of the non‐stoichiometry and phonon confinement effect. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
We present a detailed analysis of the Raman spectra of polyurethane (PU)/single wall carbon nanotube (SWCNT) composites obtained at room temperature using 488 and 514.5 nm laser excitation. The spectra reveal a significant influence of the polymeric matrix on the carbon nanotube bundles. The nanocomposite Raman bands become broader and are shifted to higher frequencies in comparison to the corresponding bands of the pristine SWCNT bundles. Redistribution of intensity in the vicinity of a G-band and an increase of splitting of the radial breathing mode are also observed for the nanocomposites. Various spectral features of SWCNT clearly indicate the large interfacial interaction of the PU matrix and the SWCNT, possibly due to the π-π stacking between the PU chains and the SWCNT.  相似文献   

13.
The red dye Sudan I was investigated by Raman spectroscopy using different excitation wavelengths (1064, 532 and 244 nm). A calculation of the Raman spectrum based on quantum mechanical ab initio density functional theory (DFT) was made using the RB3LYP method with the 3‐21G and 6‐311 + G(d,p) basis sets. The vibrations in the region 1600–1000 cm−1 were found to comprise various mixed modes including in‐plane stretching and bending of various C C, N N, C N and C O bonds and angles in the molecule. Below ∼900 cm−1, the out‐of‐plane bending modes were dominant. The central hydrazo chromophore of the Sudan I molecule was involved in the majority of the vibrations through NN and C N stretching and various bending modes. Low‐intensity bands in the lower wavenumber range (at about 721, 616, 463 and 218 cm−1) were selectively enhanced by the resonance Raman effect when using the 532 nm excitation line. Comparison was made with other azo dyes in the literature on natural, abundant plant pigments. The results show that there is a possibility in foodstuff analysis to distinguish Sudan I from other dyes by using Raman spectroscopy with more than one laser wavelength for resonance enhancement of the different bands Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Spatially offset Raman spectroscopy (SORS) is a technique that can obtain subsurface layered information by collecting Raman spectra from a series of surface positions laterally offset from the excitation laser. Currently optical fiber probes are used as major tools in SORS measurement, which are either slow (single fiber probe with mechanical movement) or restricted in selecting offset range and interval (fiber probe array). This study proposes a new method to conduct SORS measurement based on a newly developed line‐scan hyperspectral Raman imaging system. A 785‐nm point laser was used as an excitation source. A detection module consisting of an imaging spectrograph and a charge‐coupled device camera was used to acquire line‐shape SORS data in a spectral region of −592 to 3015 cm−1. Using a single scan, the system allowed simultaneous collection of a series of Raman spectra in a broad offset range (e.g. 0–36 mm in two sides of the incident laser) with a narrow interval (e.g. 0.07 mm). Four layered samples were created by placing butter slices with thicknesses of 1, 4, 7, and 10 mm on top of melamine powder, providing different individual Raman characteristics to test the line‐scan SORS technique. Self‐modeling mixture analysis (SMA) was used to analyze the SORS data. Raman spectra from butter and melamine were successfully retrieved for all four butter‐on‐melamine samples using the SMA method. The line‐scan SORS measurement technique provides a flexible and efficient method for subsurface evaluation, which has potential to be used for food safety and quality inspection. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
We study the optical properties of a single, semiconducting single-walled carbon nanotube (CNT) that is partially suspended across a trench and partially supported by a SiO2-substrate. By tuning the laser excitation energy across the E 33 excitonic resonance of the suspended CNT segment, the scattering intensities of the principal Raman transitions, the radial breathing mode (RBM), the D mode and the G mode show strong resonance enhancement of up to three orders of magnitude. In the supported part of the CNT, despite a loss of Raman scattering intensity of up to two orders of magnitude, we recover the E 33 excitonic resonance suffering a substrate-induced red shift of 50 meV. The peak intensity ratio between G band and D band is highly sensitive to the presence of the substrate and varies by one order of magnitude, demonstrating the much higher defect density in the supported CNT segments. By comparing the E 33 resonance spectra measured by Raman excitation spectroscopy and photoluminescence (PL) excitation spectroscopy in the suspended CNT segment, we observe that the peak energy in the PL excitation spectrum is red-shifted by 40 meV. This shift is associated with the energy difference between the localized exciton dominating the PL excitation spectrum and the free exciton giving rise to the Raman excitation spectrum. High-resolution Raman spectra reveal substrate-induced symmetry breaking, as evidenced by the appearance of additional peaks in the strongly broadened Raman G band. Laser-induced line shifts of RBM and G band measured on the suspended CNT segment are both linear as a function of the laser excitation power. Stokes/anti-Stokes measurements, however, reveal an increase of the G phonon population while the RBM phonon population is rather independent of the laser excitation power.  相似文献   

16.
In this report, the near infrared 1064 nm line of an Nd:YAG laser, which has strong thermal effect, was used as the excitation. A temperature dependence of the Raman spectra of carbon nanotubes was observed at different temperatures by varying the incident laser power. The results show that the relative Raman intensities to the tangential stretching mode (G mode) of the higher-order Raman modes within 2500–3500 cm−1 increase with increasing excitation laser power at the sample and the changes in the relative Raman intensities are linear in the excitation laser power. This has not been reported elsewhere. Thorough analysis shows that this is a temperature dependence of double-phonon Raman scattering and maybe provide important information for the studying of CNTs and double-phonon Raman scattering.  相似文献   

17.
The properties of dynamically compacted monoclinic zirconia have been studied by X-ray powder diffraction, IR, Raman, EPR and luminescence spectroscopy. Compaction introduces a large number of defects into the sample, which leads to a broadening of the X-ray lines, and IR and Raman bands. Besides, Raman spectra of compacted samples recorded with both 1064 and 488 nm excitation show additional bands in comparison with original monoclinic zirconia. The bands in the region 540–730 nm with 488 nm excitation are ascribed to electronic transitions of Sm3+ ions. The nature of the extra bands in the 3000–1830 cm−1 region observed with 1064 nm excitation is unknown. Their intensity depends on the concentration of defects, but these bands are still observed for a sample containing no paramagnetic defects. In contrast to uncompacted zirconia, the EPR spectrum of the dynamically compacted material shows defects, most likely related to VO (oxygen vacancies), which might be an indication for ionic conduction. As monoclinic zirconia is not an ionic conductor, it could be that shock-compaction introduces sample conductivity, e.g. ionic conduction, which can be important for the development of new applications such as batteries.  相似文献   

18.
First and second‐order Raman spectra of B6O and their dependence on the wavelength of the excitation line from IR (infrared) to deep UV (ultraviolet) has been studied. The first‐order Raman spectra contain 11 well‐resolved lines of the 12 expected modes 5 A1g + 7 Eg (space group R‐3m, point group D3d). The second‐order Raman spectra contains eight lines that are resolved only in the case of the 244‐nm excitation line. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The Raman spectra of individual multiwalled carbon nanotubes (MWCNTs) with the innermost diameters of 0.6–0.9 nm are studied by surface‐enhanced Raman scattering. The influences of small innermost diameters to Raman features are investigated. A clear and relatively sharp Raman peak appears at 1510 cm−1 when the innermost diameter is close to 0.6 nm. Lorentzian fits of G band indicate that its splitting is affected by the small innermost diameter of MWCNT. Moreover, the splitting of 2iTO mode is also observed at 2800–3000 cm−1. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Raman spectroscopy is structure sensitive non‐destructive method that allows observing the status of biological tissues with minimal impact. This method has a great potential in the diagnosis of various types of degenerative diseases including cancer damages. Near‐infrared Fourier transform (NIR‐FT)‐Raman (λex ~1064 nm), NIR‐visible (Vis)‐Raman (λex ~785 nm) and Vis‐Raman (λex ~532 nm) spectra of normal and colorectal carcinoma colon tissue samples were recorded in macroscopic mode at 10–20 randomly chosen independent sites. In the cases of NIR‐Vis‐ and Vis‐Raman spectra, enhanced resonance effects were observed for tissue chromophores absorbing in the visible area. Evident spectral differences were noticed for Raman spectra of normal colon tissue samples in comparison with abnormal samples. The average Raman spectra of colon tissue samples were analysed by principal component analysis (PCA) to discriminate normal and abnormal tissues. PCA of combined dataset containing Raman intensities of chosen NIR‐FT, NIR‐Vis or Vis‐Raman bands led to discrimination of normal and abnormal colon tissue samples. Therefore, combination of these three Raman methods can be helpful for recognizing cancer lesions in colon for diagnostic purposes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号