首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mode assignment of the cubic phase of anhydrous Na2MoO4 was carried out on the basis of lattice dynamic calculation using the classical rigid‐ion model. Temperature‐dependent studies indicate that this crystal remains in the cubic structure in the 15–773 K range and undergoes a phase transition at around 783 K. The behavior of the Raman modes indicates that this transition is strongly first‐order in nature and the phase above 773 K may have an orthorhombic symmetry. This transition is connected with tilting and/or rotations of the MoO4 tetrahedra, which lead to a disorder at the MoO4 sites. Our results give also evidence that the Mo O bond lengths decrease in the high‐temperature phase. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Raman spectroscopy measurements of polycrystalline Na2MoO4·2H2O (NMHO) and Na2MoO4 (NM) under hydrostatic pressure (from 0 to 10 GPa) were performed. This study allowed us to monitor the stretching and bending vibrations of MoO4 ions as well as the translational modes as a function of pressure. The pressure dependence of the wavenumbers of the modes indicates that the Na2MoO4·2H2O undergoes two phase transitions at about ∼3 and ∼4 GPa. When releasing pressure, we have observed that the original spectrum is recovered, thereby pointing to a reversible process. The Na2MoO4 (NM) starting phase was found to be stable up to 10 GPa. The pressure‐dependent Raman data for NM did not reveal any structural modification. The influence of the pressure‐transmitting medium on the phase transitions is also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Temperature–dependent Raman studies of disodium dimolybdate (Na2Mo2O7) crystal are reported. Lattice dynamical calculation was used to predict both wavenumbers and atomic displacements (eigenvectors) for the vibrational modes. These calculations were based on the classical rigid‐ion model. The high‐temperature Raman scattering study of the crystal showed that it remains in the orthorhombic structure in the 8–848 K range and undergoes a structural phase transition between 848 and 854 K. This phase transition is most likely connected with weak tiltings and/or rotations of both MoO4 (tetrahedra) and MoO6 (octahedra) units, which lead to a disorder in the oxygen sublattice. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The Raman spectra of Cs2NH4WO3F3 elpasolite crystals are studied in the temperature range 93–373 K at pressures of up to 6.3 GPa. No indication of a phase transition is revealed from the Raman spectra as the temperature decreases to 93 K. An analysis of the Raman spectra measured under pressure demonstrates that the Cs2NH4WO3F3 elpasolite crystals undergo a phase transition at a pressure of 2.58 GPa. Judging from the behavior of the pressure dependences of the vibrational frequencies, the revealed phase transition is associated with the lowering of the symmetry of the WO3F3 octahedra.  相似文献   

5.
The samples in two material systems, Na2Mo1? x W x O4 and Na2Mo1? y S y O4, were prepared by using conventional solid reactions and characterized by X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDX), and difference scanning calorimetry (DSC). The XRD and EDX data indicated that all the samples in both systems were in the solid solution range. The DSC data indicated that in the system Na2Mo1? x W x O4, the solid–solid transition temperatures increased and in the system Na2Mo1? y S y O4, the solid–solid transition temperatures decreased. The total enthalpy (ΔH total) of the solid–solid transitions in the system Na2Mo1? x W x O4, decreased much less than that in the system Na2Mo1? y S y O4. This is probably because similar to Na2MoO4, the solid–solid transition of Na2WO4 has relatively large ΔH total, but Na2SO4 has much smaller solid–solid transition enthalpy. In order to modify the transition temperatures of Na2MoO4 and also to keep its relatively large ΔH total, it is necessary to choose a doping material with large ΔH total.  相似文献   

6.
Temperature-dependent polarized Raman spectra of KGd(WO4)2: (Er, Yb) single crystals have been analyzed over the 77-292 K temperature range. The Ag and Bg spectra obtained are discussed in terms of factor group analysis. The spectra have been found to reveal the bands related to internal and external vibrations of WO42−, WOW and WOOW molecular groups. Strong depolarization of the majority of the Raman bands has been observed in the whole temperature range. Some anomalies in the spectral parameters of selected Raman bands below 175 K have been discussed in terms of the local distortion of WO42− ions in KGd(WO4)2: (Er, Yb) crystals.  相似文献   

7.
The synthesis of sodium hexatitanate from sodium trititanate was characterized by Raman spectroscopy, X‐ray diffraction (XRD) and high‐resolution transmission electron microscopy (HRTEM). The structural evolution from trititanate to hexatitanate was studied using Raman spectra, XRD and HRTEM techniques. It was found that the Raman bands at 279 cm−1 corresponding to very long Ti O bonds and at 883 cm−1 corresponding to the very short Ti O bonds decrease in intensity and finally disappear during the transition from sodium trititanate to sodium hexatitanate. The band at 922 cm−1 corresponding to an intermediate‐length Ti O bond was observed to become stronger with the increase in temperature, indicating that there is no terminal oxygen atom in the crystal structure of Na2Ti6O13 and that all the oxygen atoms become linearly coordinated by two titanium atoms. Furthermore, the TiO6 octahedron in Na2Ti6O13 are more regular because the very long (2.2 Å) or very short (1.7 Å) Ti O bonds disappear. It is revealed that the phase transition from trititanate to hexatitanate is a step‐by‐step slipping process of the TiO6 octahedral slabs with the loss of sodium cations, and a new phase with formula Na1.5H0.5Ti3O7 has been discovered as an intermediate phase to interlink Na2Ti3O7 and Na2Ti6O13. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Room‐temperature polarized Raman spectra of a single crystal and IR spectra of a polycrystalline sample were measured for [N(C2H5)4]2MnCl4 and the assignment of the observed bands to the respective modes has been proposed. Temperature‐dependent Raman and far‐IR studies were also performed for the polycrystalline sample in order to obtain information on changes occurring in this material as a result of phase transitions at T1 = 227 K and at T2 = 199 K. These studies revealed that the higher‐temperature ferroelastic phase transition is associated with significant modification of vibrational properties due to ordering of tetraethylammonium groups. The lower‐temperature phase transition does not lead to any clear changes in the spectra. However, our results suggest that disorder of MnCl42− ions decreases with decreasing temperature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
(NH4)2MoO2F4 single crystals were grown and studied using polarization-optical methods, and the birefringence was measured in the temperature range 90–350 K. The following sequence of phase transitions is revealed: G 0 ? G 1 ? G 2. It is established that the phase transition at T 01 ≈ 267 K is of the first order and exhibits thermal hysteresis δT 01 ≈ 0.6 K. A weak anomaly is found in Δn(T) at T 02 ≈ 180 K. The crystals are shown to retain the orthorhombic symmetry during the phase transitions.  相似文献   

10.
We combined spectroscopic ellipsometry and Raman scattering measurements to explore the electronic structure and lattice dynamics in Li2Ni(WO4)2. The optical absorption spectrum of Li2Ni(WO4)2 measured at room temperature presents a direct optical band gap at 2.25 eV and two bands near 5.2 and 6.0 eV, which are attributed to charge-transfer transitions from oxygen 2p states to nickel 3d or tungsten 5p states. The Raman scattering spectrum of Li2Ni(WO4)2 measured at room temperature presents seventeen phonon modes at approximately 112, 143, 193, 222, 267, 283, 312, 352, 387, 418, 451, 476, 554, 617, 754, 792, and 914 cm−1. When the temperature is decreased to 20 K, the frequency, linewidth, and normalized intensity of all phonon modes exhibited almost no temperature dependence. Upon cooling across 13 K, which is the antiferromagnetic phase transition temperature, the oxygen octahedra stretching mode at 914 cm−1 exhibited a softening and an increase in intensity, thus suggesting a coupling between the magnetic and lattice degrees of freedom. The spin-phonon coupling constant was estimated to be 0.94 mRy/Å2, indicating a weak spin-phonon interaction in Li2Ni(WO4)2.  相似文献   

11.
The Raman spectroscopic characterization of the orthorhombic phase of Cs2RuO4 was carried out by means of group theory and quantum chemical analysis. Multiple models based on ruthenate (VI+) tetrahedra were tested, and characterization of all the active Raman modes was achieved. A comparison of Raman spectra of Cs2RuO4, Cs2MoO4, and Cs2WO4 was also performed. Raman laser heating induced a phase transition from an ordered to a disordered structure. The temperature‐phase transition was calculated from the anti‐Stokes/Stokes ratio and compared with the ones measured at macroscopic scale. The phase transition is connected with tilting and/or rotations of RuO4 tetrahedra, which lead to a disorder at the RuO4 sites. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd.  相似文献   

12.
《Solid State Ionics》1986,20(1):61-68
Electrical conductivity data are reported for solid solutions of Na2SO4, K2WO4, Na2WO4, Na2MoO4, Rb2SO4, Na4SiO4 and Gd2 (SO4)3. In all cases, except K2SO4, we observed an increase in Na+ conductivity effected by lattice expansion and/or incorporation of ion vacancies in addition to a structural transformation. Boundary conditions were shown to exist for these factors to yield a limiting Na+ conductivity with a constant fraction of Na+ based on a percolation model of transport. The higher conductivity data observed for the larger radius isovalent WO2-4 and aliovalent SiO4-4 doped Na2SO4 show conclusively that the anion-rotation ”cogwheel” mechanism does not contribute to the cationic conductivity in Na2SO4.  相似文献   

13.
We report temperature-dependent Raman studies on single crystals of [N(CH3)4]2ZnCI4 from 300 to 10 K. The observed spectral features suggest that both the N(CH3)4 + and ZnCl2- 4 ions are distorted from their regular tetrahedral structure and occupy sites of Cs symmetry in the lattice at room temperature. From the variation of line width of some selected Raman bands and other spectral changes as a function of temperature, it is inferred that both the ZnCl2- 4 and—CH3 groups have high motional freedom at room temperature and the different phase transitions up to 160 K are triggered by the gradual freezing-in of orientational freedom of these groups, while the N—C4 tetrahedra do not play any significant role in these phase transitions. The monoclinic to orthorhombic superlattice phase transitions at 159 K is triggered by freezing-in of the orientational motions of both the ZnCl2- 4 and N(CH3)+ 4 groups in the lattice.  相似文献   

14.
Nanosized crystallites Bi2MoO6 of a platelet shape were synthesized by a mild hydrothermal crystallization process. The effect of particle size on the structure and properties of Bi2MoO6 was studied by X‐ray diffraction, transmission electron microscopy, as well as Raman and infrared (IR) spectroscopies. Moreover, temperature‐dependent Raman spectra were collected for bulk and nanocrystalline Bi2MoO6. These studies showed that the thickness of the smallest crystallites is about 8–11 nm. Raman and IR studies have revealed that the damping and the intensity of Raman and IR bands are significantly modified with decreasing particle size and temperature. Moreover, some bands experience significant shifts both towards lower and higher wavenumbers. The obtained results indicate that, similar to the isostructural Bi2WO6, the orthorhombic distortion decreases with decreasing particle size. However, the structure of nanocrystalline Bi2MoO6 remains orthorhombic and noncentrosymmetric, and the structural changes are not the same as those observed in Bi2WO6. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Spin and lattice dynamics of R2CuO4 (R=Pr, Sm, and Eu) crystals were studied over the frequency and temperature ranges 20–250 GHz and 5–350 K, respectively. The absorption coefficients of the R2CuO4 crystals (R=Pr, Sm, and Eu) were found to change dramatically at temperatures of, respectively, 20, 80, and 150 K over a broad frequency range above 120 GHz. The absorption jumps were caused by the structural phase transitions. Broad spin-wave bands were observed in the high-temperature phases of all crystals studied. Absorption lines due to lattice dynamics were observed near the temperatures of structural phase transition over a broad frequency range, including the frequencies corresponding to the spin-wave bands.  相似文献   

16.
By using spatially resolved Raman spectroscopy together with in situ microscopy, mixed Na2SO4/MgSO4 aerosol particles with molar ratios of 1:1 and 2:1 deposited on a quartz substrate were carefully examined in their evaporation processes. Upon decreasing the relative humidity (RH), phase separations were found to occur for these droplets. For Na2SO4/MgSO4 droplets with a molar ratio of 1:1, two paths of phase separation were identified, and a large amount of small crystals were observed to disorderly distribute in the residual solutions. By comparisons with the known Raman spectra of crystals, it was concluded that the scattered crystals in the two paths were anhydrous Na2SO4 in metastable phase III and the double salt of Na2SO4· MgSO4 · 4H2O, respectively. For Na2SO4/MgSO4 aerosol droplets with a molar ratio of 2:1, only anhydrous Na2SO4 in metastable phase III precipitated with the decrease of RH. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The temperature dependence of the Raman bands of Cr4+ modes which show enhanced intensities due to pre‐resonance effects is reported from 293 to 673 K in chromium‐doped titanite (CaTiOSiO4). Some aspects of the temperature dependence of Raman bands in pure, synthetic titanite which have not been previously published are also included in this study. Two Raman‐active components of Ag and Bg symmetry, respectively, of the symmetric Si–O mode in titanite are predicted under P21/a symmetry and also been identified in this phase for the first time. The one component of Bg symmetry disappears just above the antiferroelectric–paraelectric transition at ~500 K in accordance with the predictions under A2/a symmetry for the high‐temperature phase. Two resonance‐enhanced components of the Cr4+–O stretch are also evident in the P21/a phase and only one could be identified in the A2/a phase, again in accordance with group‐theoretical predictions. These observations can be used to characterize the P21/a and A2/a phases of pure synthetic and chromium‐doped titanite. The temperature dependence of the Cr4+–O modes can be approximated by two‐dimensional Ising behavior with the critical exponent β ≈ 1/8 below 450 K. Between 450 and 498 K, anomalous behavior is observed and this could be due to the appearance of mobile anti‐phase boundaries (APBs). Anomalous behavior also persists to temperatures above 500 K. The half‐width of the Ti–O stretching mode reflects the influence of the order parameter (Ti–O displacements) as well as mobile anti‐phase boundaries. No evidence could be found of the existence of other ions such as Cr4+‐ions in Ti‐sites and/or Cr3+‐ions also in Ti‐positions in Cr‐doped titanite in the Raman spectra using different laser lines to excite the spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Photoluminescence spectra, photoluminescence decay curves and Raman scattering spectra have been investigated for stoichiometric rare-earth molybdate and tungstate compounds. NaNd(MoO4)2 and NaNd(WO4)2 show emissions due to the transition 4F3/24I9/2 in Nd3+. A possibility of laser oscillation in NaNd(MoO4)2 is pointed from comparisons of the emission intensity and the decay time constant with NaNd(WO4)2 where laser oscillations have been reported. In NaLa(MoO4)2 and NaLa(WO4)2, observed emissions which are not related to La3+ are probably due to the transitions in MoO42- and WO42- molecular ions, respectively, in scheelite crystal. Raman spectra of these compounds are similar, probably related to the same crystal structure. LiEr(MoO4)2 shows the emissions due to transitions 2H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 in Er3+, respectively, which are believed to be observed for the first time.  相似文献   

19.
The polarization switching in sinusoidal fields and the pyroelectric properties of Li2?x Na x Ge4O9 (0.2 ≤ x ≤ 0.3) crystals are measured in the temperature range T c ?T ≤ 40 K. The behavior of the P?E hysteresis loops with variations in temperature is investigated for crystals with phase transition temperatures T c < 300 K and T c > 300 K. It is shown that, for crystals with phase transition temperatures T c < 300 K, the temperature dependence of the hysteresis loop exhibits a behavior typical of crystals with second-order phase transitions. The crystals with phase transition temperatures T c > 300 K are characterized by double hysteresis loops in the temperature range T c ?T 1 ≈ 30 K. The correlation between the polarization properties and possible structural transformations of the Li2?x Na x Ge4O9 crystals due to the change in the concentration ratio of Na and Li ions is discussed.  相似文献   

20.
A Jayaraman  S K Sharma  S Y Wang 《Pramana》1993,40(5):357-365
High pressure Raman spectroscopic studies on Gd2(MoO4)3(GMO) have been carried out at ambient temperature in the diamond cell to 10 GPa hydrostatic pressure. These experiments have revealed pressure-induced phase transitions in GMO near 2 GPa and 6.0 GPa. The first transition is from Pba2(β′) phase to another undetermined crystalline phase, designated as phase II, and the second transition is to an amorphized state. On releasing pressure there is a partial reversion to the crystalline state. The Raman data indicate that the amorphization is due to disordering of the MoO4 tetrahedral units. Further, it is inferred from the nature of the Raman bands in the amorphized material that the Mo-O bond lengths and bond angles have a range of values, instead of a few set values. The results of the present study as well as previous high pressure-high temperature quenching experiments strongly support that pressure-induced amorphization in GMO is a consequence of the kinetically impededβ toα phase transition. The system in frustration becomes disordered. The rare earth trimolybdates crystallizing in theβ′ structure are all expected to undergo similar pressure-induced amorphization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号