首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Crystal Growth》2003,247(1-2):110-118
Epitaxial growth of CoO films was studied using reflection high-energy electron diffraction (RHEED), electron energy loss spectroscopy (EELS), ultraviolet photoelectron spectroscopy (UPS) and Auger electron spectroscopy (AES). The RHEED results indicated that an epitaxial CoO film grew on semiconductor and metal substrates (CoO (0 0 1)∥GaAs (0 0 1), Cu (0 0 1), Ag (0 0 1) and [1 0 0]CoO∥[1 0 0] substrates) by constructing a complex heterostructure with two alkali halide buffer layers. The AES, EELS and UPS results showed that the grown CoO film had almost the same electronic structure as bulk CoO. We could show that use of alkali halide buffer layers was a good way to grow metal oxide films on semiconductor and metal substrates in an O2 atmosphere. The alkali halide layers not only works as glue to connect very dissimilar materials but also prevents oxidation of metal and semiconductor substrates.  相似文献   

2.
Molecular beam deposition systems allow for unparalleled control of film composition and structure. This article addresses the capacity for controlling metal and oxidant fluxes in the Yb/O2 system to access the metastable phase ytterbium monoxide (YbO). Experiments exploring the growth of polycrystalline YbOx films by molecular beam deposition demonstrate that a 2:1 molar ratio of Yb:O2 fluxes is necessary to achieve preferential growth of the divalent oxide. Applying similar deposition conditions to a (0 0 1) GaN surface leads to the growth of epitaxial (1 1 1) YbO films. Similar to other rocksalt oxides grown on GaN surfaces, YbO films display a 3D growth mechanism that leads to a grainy morphology with crystallites of 50 nm lateral dimensions. Rocking curves in ω and φ have full-width half-maximum values of 1.77° and 4.1°, respectively; further improvements in crystal quality appear to be limited by the thermal stability of the YbO phase.  相似文献   

3.
C.Y. Lam  K.H. Wong 《Journal of Non》2008,354(35-39):4262-4266
Mn-doped cuprous oxide Cu2?xMnxO (CMO), where x = 0.03, is a p-type diluted magnetic semiconductor (DMS) with Curie temperature above room temperature [M. Wei, N. Braddon, et al., Appl. Phys. Lett. 86 (2005) 0725141; Y.L. Liu, S. Harrington, et al., Appl. Phys. Lett. 87 (2005) 222108]. We have grown CMO (x = 0.03) thin films of about 200 nm thick on n-type semiconducting (0 0 1)Nb–SrTiO3(NSTO) single crystal substrates by pulsed laser deposition. Cubic crystalline phases of CMO layers were obtained in a narrow deposition pressure window of about 20 mTorr at growth temperature of 650 °C. X-ray diffraction and TEM studies of these heterostructures reveal a cube-on-cube epitaxial relationship of [CMO]001/[NSTO]001. All the oxide p–n junctions with the size of 500 × 500 μm were fabricated by the shadow masking technique. These junctions show highly asymmetric IV characteristics. The rectification ratio at room temperature is about 103 at ±2 V. Leakage current density of 10?4 A cm?2 at ?1 V is observed. No apparent junction breakdown is recorded at reverse bias voltages down to ?5 V. From the 1/C2V plots, the forward bias turn on voltage is ~1.4 V. Clear junction current rectifying property is maintained at up to 200 °C. Our results have demonstrated that epitaxial CMO films can be fabricated on lattice matched cubic substrates. They are suitable DMS for above room temperature spintronic junction applications.  相似文献   

4.
Zn3As2 epitaxial layers were grown on GaAs (1 0 0) substrates by liquid phase epitaxy (LPE) using Ga as the solvent. Zinc mole fraction in the growth melt was varied from 1.07×10?2 to 6×10?2. X-ray diffraction spectrum exhibits a sharp peak at 43.3° characteristic of Zn3As2 crystalline layer. The peak intensity increases with increase in zinc mole fraction in the growth melt. The compositions of the as-grown Zn3As2 layers were confirmed by energy dispersive X-ray (EDX) analysis. Surface morphology was studied using scanning electron microscopy (SEM) and the thickness of the epilayers was also determined. The Hall measurements at 300 K indicate that Zn3As2 epilayers are unintentionally p-doped. With an increase of zinc mole fraction in the growth melt, carrier concentration increases and carrier mobility decreases. Infrared optical absorption spectroscopy showed a sharp absorption edge at 1.0 eV corresponding to the reported band gap of Zn3As2.  相似文献   

5.
We present the growth optimization and the doping by the metal organic chemical vapor deposition of lattice-matched Al0.82In0.18N bottom optical confinement layers for edge emitting laser diodes. Due to the increasing size and density of V-shaped defects in Al1?xInxN with increasing thickness, we have designed an Al1?xInxN/GaN multilayer structure by optimizing the growth and thickness of the GaN interlayer. The Al1?xInxN and GaN interlayers in the multilayer structure were both doped using the same SiH4 flow, while the Si levels in both layers were found to be significantly different by SIMS. The optimized 8×(Al0.82In0.18N/GaN=54/6 nm) multilayer structures grown on free-standing GaN substrates were characterized by high resolution X-ray diffraction, atomic force microscopy and transmission electron microscopy, along with the in-situ measurements of stress evolution during growth. Finally, lasing was obtained from the UV (394 nm) to blue (436 nm) wavelengths, in electrically injected, edge-emitting, cleaved-facet laser diodes with 480 nm thick Si-doped Al1?xInxN/GaN multilayers as bottom waveguide claddings.  相似文献   

6.
《Journal of Crystal Growth》2006,286(2):376-383
Bismuth silicate and bismuth titanate thin films were deposited by atomic layer deposition (ALD). A novel approach with pulsing of two Bi-precursors was studied to control the Si/Bi atomic ratio in bismuth silicate thin films. The crystallization of compounds formed in the Bi2O3–SiO2 and Bi2O3–TiO2 systems was investigated. Control of the stoichiometry of Bi–Si–O thin films was studied when deposited on Si(1 0 0) and crystallization was studied for films on sapphire and MgO-, ZrO2- and YSZ-buffered Si(1 0 0). The Bi–Ti–O thin films were deposited on Si(1 0 0) substrate. Both Bi–Si–O and Bi–Ti–O thin films were amorphous after deposition. Highly a-axis oriented Bi2SiO5 thin films were obtained when the Bi–Si–O thin films deposited on MgO-buffered Si(1 0 0) were annealed at 800 °C in nitrogen. The full-width half-maximum values for 200 peak were also studied. An excess of bismuth was found to improve the crystallization of Bi–Ti–O thin films and the best crystallinity was observed with Ti/Bi atomic ratio of 0.28 for films annealed at nitrogen at 1000 °C. Roughness of the thin films as well as the concentration depth distribution were also examined.  相似文献   

7.
Currently there is a high level of interest in the development of ultraviolet (UV) light sources for solid-state lighting, optical sensors, surface decontamination and water purification. III-V semiconductor UV LEDs are now successfully manufactured using the AlGaN material system; however, their efficiency is still low. The majority of UV LEDs require AlxGa1-xN layers with compositions in the mid-range between AlN and GaN. Because there is a significant difference in the lattice parameters of GaN and AlN, AlxGa1-xN substrates would be preferable to those of either GaN or AlN for many ultraviolet device applications. However, the growth of AlxGa1-xN bulk crystals by any standard bulk growth techniques has not been developed so far.There are very strong electric polarization fields inside the wurtzite (hexagonal) group III-nitride structures. The charge separation within quantum wells leads to a significant reduction in the efficiency of optoelectronic device structures. Therefore, the growth of non-polar and semi-polar group III-nitride structures has been the subject of considerable interest recently. A direct way to eliminate polarization effects is to use non-polar (001) zinc-blende (cubic) III-nitride layers. However, attempts to grow zinc-blende GaN bulk crystals by any standard bulk growth techniques were not successful.Molecular beam epitaxy (MBE) is normally regarded as an epitaxial technique for the growth of very thin layers with monolayer control of their thickness. In this study we have used plasma-assisted molecular beam epitaxy (PA-MBE) and have produced for the first time free-standing layers of zinc-blende GaN up to 100 μm in thickness and up to 3-inch in diameter. We have shown that our newly developed PA-MBE process for the growth of zinc-blende GaN layers can also be used to achieve free-standing wurtzite AlxGa1-xN wafers. Zinc-blende and wurtzite AlxGa1-xN polytypes can be grown on different orientations of GaAs substrates - (001) and (111)B respectively. We have subsequently removed the GaAs using a chemical etch in order to produce free-standing GaN and AlxGa1-xN wafers. At a thickness of ~30 µm, free-standing GaN and AlxGa1-xN wafers can easily be handled without cracking. Therefore, free-standing GaN and AlxGa1-xN wafers with thicknesses in the 30–100 μm range may be used as substrates for further growth of GaN and AlxGa1-xN-based structures and devices.We have compared different RF nitrogen plasma sources for the growth of thick nitride AlxGa1-xN films including a standard HD25 source from Oxford Applied Research and a novel high efficiency source from Riber. We have investigated a wide range of the growth rates from 0.2 to 3 µm/h. The use of highly efficient nitrogen RF plasma sources makes PA-MBE a potentially viable commercial process, since free-standing films can be achieved in a single day.Our results have demonstrated that MBE may be competitive with the other group III-nitrides bulk growth techniques in several important areas including production of free-standing zinc-blende (cubic) (Al)GaN and of free-standing wurtzite (hexagonal) AlGaN.  相似文献   

8.
《Journal of Crystal Growth》2006,286(2):235-239
The characteristics of Si-doped and undoped GaN/Si(1 1 1) heteroepitaxy with composite buffer layer (CBL) and superlattice are compared and discussed. While as-grown Si-doped GaN/Si(1 1 1) heteroepitaxy shows lower quality compared to undoped GaN, crack-free n-type and undoped GaN with the thickness of 1200 nm were obtained by metalorganic chemical vapor deposition (MOCVD). In order to achieve the crack-free GaN on Si(1 1 1), we have introduced the scheme of multiple buffer layers; composite buffer layer of Al0.2Ga0.8N/AlN and superlattice of Al0.2Ga0.8N/GaN on 2-in. Si(1 1 1) substrate, simultaneously. The FWHM values of the double-crystal X-ray diffractometry (DCXRD) rocking curves were 823 arcsec and 745 arcsec for n-GaN and undoped GaN/Si(1 1 1) heteroepitaxy, respectively. The average dislocation density on GaN surface was measured as 3.85×109 and 1.32×109 cm−2 for n-GaN and undoped GaN epitaxy by 2-D images of atomic force microscopy (AFM). Point analysis of photoluminescence (PL) spectra was performed for evaluating the optical properties of the GaN epitaxy. We also implemented PL mapping, which showed the distribution of edge emission peaks onto the 2 inch whole Si(1 1 1) wafers. The average FWHMs of the band edge emission peak was 367.1 and 367.0 nm related with 3.377 and 3.378 eV, respectively, using 325 nm He-Cd laser as an excitation source under room temperature.  相似文献   

9.
m-Plane GaN was grown selectively by metal–organic chemical vapor deposition (MOCVD) on patterned Si(1 1 2) substrates, where grooves aligned parallel to the Si〈1 1 0〉 direction were formed by anisotropic wet etching to expose the vertical Si{1 1 1} facets for growth initiation. The effect of growth conditions (substrate temperature, chamber pressure, and ammonia and trimethylgallium flow rates) on the growth habits of GaN was studied with the aim of achieving coalesced m-plane GaN films. The epitaxial relationship was found to be GaN(1 1? 0 0) || Si(1 1 2), GaN[0 0 0 1] || Si[1 1 –1], GaN[1? 1? 2 0] || Si[1 1? 0]. Among all growth parameters, the ammonia flow rate was revealed to be the critical factor determining the growth habits of GaN. The distribution of extended defects, such as stacking faults and dislocations, in the selectively grown GaN were studied by transmission electron microscopy in combination with spatially resolved cathodoluminescence and scanning electron microscopy. Basal-plane stacking faults were found in the nitrogen-wing regions of the laterally overgrown GaN, while gallium-wings were almost free of extended defects, except for the regions near the GaN/Si{1 1 1} vertical sidewall interface, where high dislocation density was observed.  相似文献   

10.
《Journal of Crystal Growth》2006,286(1):197-204
The low-temperature atomic assembly of homoepitaxial GaAs thin films on the (0 0 1) surface has been investigated using molecular dynamics with a Stillinger–Weber potential energy function. During equiatomic vapor deposition, crystalline growth was observed for substrate temperatures above 35% of the melting temperature. Below this temperature, the critical epitaxial thickness began to rapidly decrease as defects were increasingly incorporated and eventually nucleated an entirely amorphous structure. The atomic assembly mechanisms of arsenic dimer incorporation, as well as gallium vacancy formation, were studied just above the amorphous/crystalline growth transition temperature. The adsorption of arsenic dimers was found to show dependence upon the orientation of the deposited molecule. Atomic processes responsible for the formation of the gallium vacancy defects were observed, and the influence of growth temperature on defect formation was also identified.  相似文献   

11.
Undoped and 5%(Mn, In)-doped SnO2 thin films were deposited on Si(1 0 0) and Al2O3 (R-cut) by RF magnetron sputtering at different deposition power, sputtering gas mixture and substrate temperature. X-ray reflectivity was used to determine the films thickness (10–130 nm) and roughness (~1 nm). The combination of X-ray diffraction and Mössbauer techniques evidenced the presence of Sn4+ in an amorphous environment, for as-grown films obtained at low power and temperature, and the formation of crystalline SnO2 for annealed films. As the deposition power, substrate temperature or O2 proportion are increased, SnO2 nanocrystals are formed. Epitaxial SnO2 films are obtained on Al2O3 at 550 °C. The amorphous films are quite uniform but a more columnar growth is detected for increasing deposition power. No secondary phases or segregation of dopants were detected.  相似文献   

12.
GaSb/AlGaSb multi-quantum well (MQW) structures with an AlSb initiation layer and a relatively thick GaSb buffer layer grown on Si (0 0 1) substrates were prepared by molecular beam epitaxy (MBE). Transmission electron microscopy (TEM) images and high-resolution X-ray diffraction (XRD) patterns indicated definite MQW structures. The photoluminescence (PL) emission around 1.55 μm wavelength was observed for 10.34 nm GaSb/30 nm Al0.6Ga0.4Sb MQW structure at room temperature. Dependence of PL emission energy on GaSb well width was well explained by finite square well potential model.  相似文献   

13.
The Si–TaSi2 eutectic in situ composite is a favorable field emission material due to relatively low work function, good electron conductivity, and three-dimensional array of Schottky junctions grown in the composite spontaneously. The preferential orientation during directional solidification is determined by the growth anisotropy. In order to obtain the preferential direction of the steady-state crystal growth, the transmission electron microscopy (TEM) is used for analysis. It is found that the preferential orientation of the Si-TaSi2 eutectic in situ composite prepared by Czochralski (CZ) technique is [3  2¯] Si∥[0 0 0 1] TaSi2, (2 2 0)Si∥(2  0 0) TaSi2. Whereas the preferential orientation of the Si–TaSi2 eutectic in situ composite prepared by electron beam floating zone melting (EBFZM) technique is [0   ]] Si∥[0 0 0 1] TaSi2,(0  1) Si∥(0  1 1)TaSi2. The preferential directions of the Si-TaSi2 eutectic in situ composites prepared by two kinds of crystal growth techniques are distinctly different from each other, which results from different solid–liquid interface temperatures on account of the different crystal growth conditions, e.g. different solidification rate, different temperature gradient, different solid–liquid interface curvature and different kinetic undercooling.  相似文献   

14.
We report on the epitaxial growth of crystalline silicon films on (100) oriented crystalline silicon substrates by standard plasma enhanced chemical vapor deposition at 175 °C. Such unexpected epitaxial growth is discussed in the context of deposition processes of silicon thin films, based on silicon radicals and nanocrystals. Our results are supported by previous studies on plasma synthesis of silicon nanocrystals and point toward silicon nanocrystals being the most plausible building blocks for such epitaxial growth. The results lay the basis of a new approach for the obtaining of crystalline silicon thin films and open the path for transferring those epitaxial layers from c-Si wafers to low cost foreign substrates.  相似文献   

15.
Heteroepitaxial growth of γ-Al2O3 films on a Si substrate and the growth of Si films on the γ-Al2O3/Si structures by molecular beam epitaxy have been investigated. It has been found from AFM and RHEED observations that, γ-Al2O3 films with an atomically smooth surface with an RMS values of ∼3 Å and high crystalline quality can be grown on Si (1 1 1) substrates at substrate temperatures of 650–750°C. Al2O3 films grown at higher temperatures above 800°C, did not show good surface morphology due to etching of a Si surface by N2O gas in the initial growth stage. It has also been found that it is possible to grow high-quality Si layers by the predeposition of Al layer followed by thermal treatment prior to the Si molecular beam epitaxy. Cross-sectional TEM observations have shown that the epitaxial Si had significantly improved crystalline quality and surface morphology when the Al predeposition layer thickness was 10 Å and the thermal treatment temperature was 900°C. The resulting improved crystalline quality of Si films grown on Al2O3 is believed to be due to the Al2O3 surface modification.  相似文献   

16.
Raman scattering spectra of Ga2S3–2MCl (M = K, Rb, Cs) glasses have been conducted at room temperature. Based on the analysis of the local co-ordination surroundings of Cs+ ions, the similarities and differences of Raman spectra for the glass Ga2S3–2CsCl and the bridged molecular GaCl3 were explained successfully. Through considering the effect of M+ ions on mixed anion units [GaS4?xClx] and bridged units [Ga2S6?xClx] and the corresponding microstructural model, the Raman spectral evolution of the Ga2S3–2MCl (M = K, Rb, Cs) glasses was reasonably elucidated.  相似文献   

17.
《Journal of Crystal Growth》2003,247(3-4):497-504
Structural, morphological, optical and electrical properties of ZnO thin films prepared by chemical spray pyrolysis from zinc acetate (Zn(CH3COO)2 2H2O) aqueous solutions, on polished Si(1 0 0), and fused silica substrates for optical characterization, have been studied in terms of deposition time and substrate temperature. The growth of the films present three regimes depending on the substrate temperature, with increasing, constant and decreasing growth rates at lower, middle, and higher-temperature ranges, respectively. Growth rate higher than 15 nm min−1 can be achieved at Ts=543 K. ZnO film morphological and electrical properties have been related to these growth regimes. The films have been characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy.  相似文献   

18.
Bi acts as a surfactant in molecular beam epitaxy (MBE) growth on GaAs(100). Incorporation is achieved by disequilibrium at growth temperatures below ~450 °C. Bi can however affect the static reconstruction up to 600 °C. Two reconstructions are considered in this work: dynamic (2×1) and static c(8×3)/(4×3), which are shown to be the dominant reconstructions for GaAsBi MBE. Bi storage in these two reconstructions provides an explanation of RHEED transitions that cause unintentional Bi incorporation in the GaAs capping layer. Finally dynamic observations of the (2×1) reconstruction are used to explain growth dynamics, atomic ordering and clustering observed in GaAsBi epilayers which have a direct influence on photoluminescence linewidth broadening in mixed anion III–V alloys.  相似文献   

19.
《Journal of Non》2006,352(23-25):2515-2520
For the first time embossing of ribs, from 1 to 10 μm wide and ∼10 mm long, has been carried out in chalcogenide glass layers sputtered onto semiconductor wafer substrates, with potential to act as monomode waveguides; these features have been similarly embossed in the surface of bulk chalcogenide glasses. The embossing shows very good replication of the GaAs mould patterning to 1 μm definition, with evidence also for sub-micron replication. For the embossing, thin coatings of the chalcogenide glasses were sputtered onto wafer substrates as follows: (i) a 6 μm layer of Ge17As18Se65 (at.%) onto porous Si-on-Si wafer substrates and (ii) a 4 μm layer of Ge15As15Se17Te53 onto uncoated GaAs substrates. The Ge17As18Se65 sputtered glass layer on porous Si-on-Si was demonstrated to slab waveguide at 1.55 μm wavelength; it was designed to achieve monomode waveguiding at 1.55 μm after embossing, for the 5 μm wide rib. The series of ribs, 1–10 μm wide, were successfully embossed in the Ge17As18Se65 glass sputtered layer on porous Si-on-Si, but cracking of the glass layer occurred during the embossing process. Successful embossing of ribs without the glass layer cracking was achieved for the Ge15As15Se17Te53 sputtered glass layer on uncoated GaAs. Due to its relative simplicity, it is likely that hot embossing of this type of glass-based matrix offers an extremely promising route for producing high-resolution, guided-wave optical components and circuitry at low-cost, high-volume, and for a wide wavelength range.  相似文献   

20.
《Journal of Crystal Growth》2006,286(2):457-464
Heteroepitaxial KNbO3 thin films and nanostructures were grown hydrothermally on (1 0 0)-oriented single-crystal SrTiO3 substrates at 125–200 °C in 15 M KOH solutions. The KNbO3 film grew with the orthorhombic structure and displayed both {1 1 0)o and (0 0 1)o orientations as anisotropic lattice expansion reduced the difference in lattice mismatch seen by each orientation. After an initial period of approximately planar growth, the film gave rise to an array of nano-sized tower-like structures apparently growing by a dislocation-assisted mechanism. It is suggested that the anisotropic growth is further promoted by a combination of decreasing supersaturation and the increased effect of adsorbed impurities on the growth front.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号