首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Raman microscopy allows a non‐destructive characterisation of inorganic and organic painting materials such as pigments and organic dyestuffs. The objectives of this study are the more recent organic pigments typically present in paintings and other art works from the 20th century. More than 20 organic synthetic pigments from different chemical classes could be identified by Raman spectroscopy using different excitation wavelengths (457.9, 476.5, 487.9, 514.5, 632.8, and 1064 nm). To evaluate the performance for real paint samples, varying paint mixtures of the Hansa Yellow pigment PY 3 and the binding medium Mowilith, a polyvinyl acetate (PVAC) compound, were characterised; PY 3 was determined at a 1 wt% level in the binder. In addition, commercial tube paints containing the quinacridone violet PV 19 were studied. The pigment was clearly identified in all of these more complex oil and acrylic paints. Finally, alizarin (PR 83) and a green copper phthalocyanine pigment (PG 7) could unambiguously be identified by Raman microscopy in the painting ‘Woman with mandolin in yellow and red’ of Max Beckmann dating 1950. The discovery of a red naphthol AS pigment by Raman spectroscopy in a sample from the ‘Three field workers’ by Georg Baselitz (1964/1965) demonstrated that in some cases complementary chromatographic methods are needed for a comprehensive identification of the organic pigments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
X‐ray fluorescence spectroscopy (XRF) and Raman spectroscopy analysis were performed to examine a 17th century painted silk banner in order to characterize the pigments and materials used. This complementary approach yields information on the elemental (XRF) and on the molecular composition (Raman) of the used compounds. The paint layer, ground layer under gilding, and gilding layer were investigated. For the studied object, vermilion (HgS), lead white (2PbCO3 · Pb(OH)2), red lead (Pb3O4), and aurichalcite ((Cu,Zn)5(CO3)2(OH)6) were found. The presence of silver and gold foils was confirmed. The techniques used in the analysis were portable, non‐destructive, and non‐invasive, which is very desirable when analyzing cultural heritage objects. The obtained results were used by the conservators to develop a showcase prototype for safe exhibition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
中国古代艺术品常用矿物颜料的拉曼光谱   总被引:1,自引:1,他引:0  
拉曼光谱技术在艺术品文物和考古学领域的应用正变得日益重要, 其中对艺术品文物中所使用的颜料的分析是这方面应用的一个重要研究课题, 本文讨论了有关的实验技术, 测量了一些在中国古代艺术品中经常使用的红色、黄色和白色颜料的拉曼光谱, 介绍了相关的背景知识, 并对这些光谱进行了解析, 这些基础数据对于进一步开展对古代壁画、彩塑、雕刻、陶瓷等的拉曼光谱分析有着重要的基础参考价值。  相似文献   

4.
In the present work a set of eight altarpieces of the 16th century (1532–1534), attributed to the Ferreirim Masters (Gregório Lopes, Garcia Fernandes and Cristóvão de Figueiredo), from the Santo António de Ferreirim Monastery (North of Portugal), were analysed by micro‐Raman spectroscopy. For this purpose some samples were taken from the paintings to characterise its artist's ‘school’. It was found that the preparation was made with chalk and gypsum and the palette composed mainly of lamp black, azurite, lead white (mixed with other pigments), lead–tin yellow type I, goethite (the main constituent of yellow ochre), red lead (as under painting), haematite (the main constituent of red ochre) and vermilion. Indigo was detected in one sample. Some derivatives and degradation products were found mainly in the panels subjected to high temperatures during a fire occurred in 1954: a degradation product from massicot or red lead, lead carbonate (dehydrated derivative of lead white), bassanite and anhydrite (hemi‐ and dehydrated forms of gypsum). These results are compared with those of previous total reflection X‐ray fluorescence spectroscopy (TXRF) analyses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Both polarized and unpolarized Raman scattering studies of seven tourmalines from the Lucyen mines in Vietnam are presented. These tourmalines, according to their chemical compositions, can be classified into four groups: G1, liddicoatite; G2, elbaite; G3, uvite; and G4, feruvite. The Raman spectra were recorded in two spectral ranges, i.e. 150–1600 cm−1 and 3000–4000 cm−1. In the lower spectral range, which covers the metal ion‐oxygen bond vibrations, all the observed A1 and E modes are identified. In the higher spectral range, we investigated the OH stretching vibrations and showed that all the observed OH stretching modes have the A1 character. In both spectral ranges, we found that the same group classification of tourmalines can be applied, and the grouping characterizations are consistent with the chemical composition results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Southern Africa has a rich heritage of hunter‐gatherer, herder and farmer rock art traditions made by using both painted and engraved techniques. Until now, there have been only a handful of studies on the chemical analysis of the paint, as all previous types of analysis required the removal of pigment samples from the sites a practice which has been avoided. Raman spectroscopy is an ideal techniques to analyse the paint non‐destructively and also offers the possibility of in situ work with portable instruments. This article describes the procedures and reports the preliminary results of the first in situ Raman spectroscopic study of rock art in South Africa (also a first worldwide), where we, first, evaluate the capability of a Raman portable instrument in very difficult conditions, second, analyse the paints in order to contribute to a better knowledge of the technology used and, third, evaluate the possible contribution of in situ analyses in conservation studies. The paintings from two different rock art sites were studied. The instrument proved to be highly suitable for in situ analyses in physically very challenging conditions. Most of the pigments and alteration products previously detected under laboratory conditions were identified, thereby giving information on both the pigments and conservation state of the paintings. A layered structure of alteration products and pigment was identified in situ for the first time by controlling the laser power, thereby obtaining the same results as in mapping experiments of cross sections of paint. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Raman spectroscopy, complemented with infrared spectroscopy, was used to study the uranyl carbonate mineral voglite. The mineral has the formula Ca2Cu2+ [(UO2)(CO3)3](CO3)6H2O, and bands attributed to these vibrating units are readily identified in the Raman spectrum. Symmetric stretching modes at 836 and 1094 cm−1 are assigned to ν1(UO2)2+ and ν1(CO3)2− units, respectively. The ν3 antisymmetric stretching modes of (UO2)2+ are not observed in the Raman spectrum but may be readily observed in the infrared spectrum at 898 cm−1. The ν3 antisymmetric stretching mode of (CO3)2− is observed in the Raman spectrum at 1369 cm−1 as a low intensity band as is also the ν3(CO3)2− infrared modes at 1362, 1425, 1509 and 1566 cm−1. No ν2(CO3)2− Raman bending modes are observed for voglite. The Raman band at 749 cm−1 and the two infrared bands at 747 and 709 cm−1 are assigned to the ν4(CO3)2− bending modes. U O bond and O H…O bond lengths in the structure of voglite were inferred from the infrared and Raman spectra. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
在本刊前一篇文章中,我们讨论了拉曼光谱在艺术品分析和考古学应用方面的实验技术并报道了一些中国古代艺术品中经常使用的红色、黄色和白色矿物颜料的拉曼光谱。本文延续前文工作,测量了一些中国古代艺术品中常用的蓝色、绿色和黑色矿物颜料的拉曼光谱,介绍了相关的背景知识,并对这些光谱进行了解析,我们相信,一套比较全面的颜料拉曼光谱数据,对于拉曼光谱技术在考古学和艺术品分析方面的应用将会起到重要的参考价值。  相似文献   

9.
拉曼光谱在考古中的应用   总被引:2,自引:0,他引:2  
王吉有  王闵  刘玲  郝伟 《光散射学报》2006,18(2):130-133
拉曼光谱分析是一种无损快速分析技术,随着显微拉曼光谱仪的不断改进和FT—显微拉曼光谱仪的使用,它已经用于珍贵艺术品、手稿、颜料、古陶瓷和壁画等领域的考古和鉴定研究。本文对这些应用进行了简单概述。  相似文献   

10.
We report the vibrational properties of vertical and oblique InN nanorods (NRs) grown by molecular beam epitaxy (MBE). Surface optical (SO) Raman mode at 561 cm−1, belonging to E1 symmetry [SO(E1)], is identified along with symmetry allowed Raman modes of E2(low), E2(high), and E1(LO) at 87, 489, and 589 cm−1, respectively, corresponding to wurtzite InN phase. Usually, SO phonon modes arise due to breakdown of translational symmetry of surface potential at surface defects, which are attributed by the surface roughness. Intensity distribution of E1(LO) and SO(E1) phonon modes over a specified area have been analysed using Raman area mapping with an optical resolution of 400 nm. Imaging with E1(LO) phonon mode, originating from the bulk of the sample, distinguishes the vertical NRs alone. We are able to resolve NR morphologies in both vertical and oblique cases with additional Raman mapping analysis of SO(E1) phonon mode, emerging from the surface irregularities, which are confined to the tip of MBE grown NRs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The molecular structure of the uranyl mineral rutherfordine has been investigated by the measurement of its Raman spectra at 298 and 77 K and complemented with infrared spectra. The infrared spectra of the (CO3)2− units in the anti‐symmetric stretching region show complexity with three sets of carbonate bands observed. This, combined with the observation of multiple bands in the (CO3)2− bending region in both Raman and IR spectra, suggests that both monodentate and bidentate (CO3)2− units are present in the structure in accordance with the X‐ray crystallographic studies. Complexity is also observed in the IR spectra of (UO2)2+ anti‐symmetric stretching region and is attributed to non‐identical UO bonds. Both Raman and infrared spectra of the rutherfordine show the presence of both water and hydroxyl units in the structure, as evidenced by IR bands at 3562 and 3465 cm−1 (OH) and 3343, 3185 and 2980 cm−1 (H2O). Raman spectra show the presence of four sharp bands at 3511, 3460, 3329 and 3151 cm−1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Densely packed hafnium tungstate blocks were synthesized by rapid solidification with a CO2 laser. It is shown that the optimum synthesis conditions for HfW2O8 are around 700 W laser power and 1 mm/s scan speed. Scanning electron microscopy (SEM) observation shows that the blocks consist of oriented nano‐threads/rods that grew horizontally on the surface region and vertically in the interior. The orientations of the nanostructures are governed by the heat transfer directions on the surface and in the interior. Raman spectroscopic and X‐ray diffraction studies show that the samples solidified in the cubic structure with minor contents of the orthorhombic phase. This is explained by a compressive stress induced during the rapid solidification process due to a sudden drop of temperature of the molten pool to the ambient. The stress is estimated to be about 0.6 GPa by comparison with high‐pressure Raman study. Some specific Raman bands appear in the samples synthesized with the laser synthetic route but not in the sample by solid‐state reaction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
在金刚石压腔中,运用激光拉曼光谱技术对高压下蛇纹石矿物结构及其稳定性进行了原位观测与研究。实验获得蛇纹石在常温下从0.1~5 140MPa的拉曼光谱数据。研究发现,蛇纹石低频拉曼谱峰388,471,692和705cm-1随压力增加有规律地向高频偏移;层内羟基3 664cm-1峰和层间羟基3 696cm-1峰与压力呈明显的正相关性。层内羟基3 664cm-1峰随压力变化的斜率为3.3cm-1.GPa-1,层间羟基3 696cm-1峰在2.0GPa时斜率由8.3cm-1.GPa-1变为1.1cm-1.GPa cm-1。在实验温压条件下,蛇纹石未发生脱水作用。  相似文献   

14.
在氮气、氢气以及氯化铵热解产生的氨气环境下,以钴作为催化剂,在780℃—940℃温度范围内使二甲苯与二茂铁受热分解,合成了CNx纳米管.在高分辨率透射电子显微镜下观察,合成的纳米管呈现“锥形嵌套”的形貌特征.从不同结构的分子面形成能的角度探讨了CNx纳米管的催化生长机理.不同温度下所制备样品的拉曼光谱研究表明,ID/IG值可以反映氮的掺杂所带来的纳米管结晶有序程度的降低,并通过G带向高波数移动证实了氮的掺杂.  相似文献   

15.
Raman spectroscopy has been used to characterise four natural halotrichites: halotrichite FeSO4.Al2(SO4)3. 22H2O, apjohnite MnSO4.Al2(SO4)3.22H2O, pickingerite MgSO4.Al2(SO4)3.22H2O and wupatkiite CoSO4.Al2(SO4)3.22H2O. A comparison of the Raman spectra is made with the spectra of the equivalent synthetic pseudo‐alums. Energy dispersive X‐ray analysis (EDX) was used to determine the exact composition of the minerals. The Raman spectrum of apjohnite and halotrichite display intense symmetric bands at ∼985 cm−1 assigned to the ν1(SO4)2− symmetric stretching mode. For pickingerite and wupatkiite, an intense band at ∼995 cm−1 is observed. A second band is observed for these minerals at 976 cm−1 attributed to a water librational mode The series of bands for apjohnite at 1104, 1078 and 1054 cm−1, for halotrichite at 1106, 1072 and 1049 cm−1, for pickingerite at 1106, 1070 and 1049 cm−1 and for wupatkiite at 1106, 1075 and 1049 cm−1 are attributed to the ν3(SO4)2− antisymmetric stretching modes of ν3(Bg) SO4. Raman bands at around 474, 460 and 423 cm−1 are attributed to the ν2(Ag) SO4 mode. The band at 618 cm−1 is assigned to the ν4(Bg) SO4 mode. The splitting of the ν2, ν3 and ν4 modes is attributed to the reduction of symmetry of the SO4 and it is proposed that the sulphate coordinates to water in the hydrated aluminium in bidentate chelation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A set of chromolithographs from the 19th century were analysed to identify the fillers and pigments used for their elaboration. Because of the delicacy of the chromolithographs, the research involved the use of Raman, Fourier‐transform infrared and energy dispersive X‐ray fluorescence spectroscopies for a complete characterization of the works on paper without removing any microsamples. Despite the high fluorescence of the samples when analyzed by Raman spectroscopy, in this paper, we demonstrated that ink spectra can be successfully enhanced by subtracting the spectra of the supporting background paper. The results of the study showed that, apparently, the lithographer used a limited range of common inorganic pigments from the 19th century (carbon black, chrome yellow, Prussian blue, red ochre, red lead and vermilion) together with organic pigments (indigo blue, gamboge and a red organic pigment). The study also found that despite the fact that during the 19th and early 20th century the use of mixtures of several pigments was a common practice, unusual admixtures were used for the preparation of some colours of the studied chromolithographs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Raman spectroscopy complemented with infrared (IR) spectroscopy has been used to study the mineral schroeckingerite. The mineral is a multi‐anion mineral and has (UO2)2+, (SO4)2− and (CO3)2− units in its structure, and bands attributed to these vibrating units are readily identified in the Raman spectra. Symmetric stretching modes at 815, 983 and 1092 cm−1 are assigned to (UO2)2+, (SO4)2− and (CO3)2− units, respectively. The antisymmetric stretching modes of (UO2)2+, (SO4)2− are not observed in the Raman spectra but may be readily observed in the IR spectrum at 898 and 1180 cm−1. The antisymmetric stretching mode of (CO3)2− is observed in the Raman spectrum at 1374 cm−1, as is also the ν4 (CO3)2− bending modes at 742 and 707 cm−1. No ν2 (CO3)2− bending modes are observed in the Raman spectrum of schroeckingerite. All the spectroscopic evidence points to a highly ordered structure of this mineral. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
ZnSe/semi‐insulating GaAs interfaces were studied by observing photogenerated plasmon–LO (PPL) coupled modes by nonresonant micro‐Raman spectroscopy. The effect of the carriers generated by the focused laser beam was investigated for a series of different thicknesses of ZnSe epitaxial layers. The PPL mode in GaAs was observed in the micro‐Raman spectra for all samples, but with different magnitude. The plasma is believed to be an electron gas as a result of the negative nature of the interfacial region that contains predominantly hole traps. The free carrier concentration is estimated to be > 1018 cm−3 and their lifetime ∼0.1 ns. This relatively long lifetime suggests that the ZnSe/GaAs interface has to be of high structural quality leading to a low recombination velocity. ZnSe/GaAs heterostructures of less crystalline quality (as determined by resonant Raman measurements) shows the effect of photogenerated carriers only to lesser extent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The objective of this study was to evaluate the use of micro‐Raman spectroscopy as a non‐invasive vibrational spectroscopic technique applied to the examination of wool samples, which may be applied to textile materials of cultural heritage interest. In this work, a selection of wool materials were primarily investigated in their unaged states through the utility of a natural wool reference together with selected samples dyed with different natural colorants, namely woad, weld and madder. The identification of the main modes of vibration of the wool fibre keratin was assessed in all the samples, which aided the determination of the changes within the protein structure, in particular, through the cysteine and peptide cross‐linkages brought about by the addition of the dyes that can produce effects similar to degradation. The dye too was assessed importantly to enable its identification through its characteristic scattering or fluorescence emissions on a woollen matrix, as well as to ascertain whether a uniform covering across the surface of the wool was achieved or not. Regarding the artificial degradation of the samples it was possible to observe numerous modifications within the molecular structure of the wool, in particular, within the amide I, C H bending, amide III and S‐S stretchings along with the physical photo‐yellowing of fibres given by the presence of lipids dispersed across the surface of the wool. The effects of ageing on the dyed samples were also investigated, indicating that many of the bands relative to the colorants were still present, yet so too were numerous vibrations from the wool that also indicated a certain level of stress and degradation to the underlying wool. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Raman spectroscopic measurements were carried out in the temperature range 10–300 K to understand the low‐temperature antiferroelectric (AFE)–ferroelectric (FE) phase transition in NaNbO3. Several modes in the low wavenumber range were found to disappear, while some new modes appeared across the transition. The temperature dependence of mode wavenumbers suggests that, during cooling, the AFE–FE phase transition begins to occur at 180 K, while the reverse transition starts at 260 K during heating. During cooling, the two phases were found to coexist in the temperature range of 220–160 K. Upon heating, the FE phase is retained up to 240 K and both FE and AFE phases coexist in the temperature range 240–300 K. In contrast to the earlier reports, the present results suggest a different coexistence region and the reverse transition temperature. The reported relaxor‐type FE behaviour over a broad temperature is consistent with the observed coexistence of phases during cooling and heating cycles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号