首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The study of the complex formation of 3,3‐diphenyl‐3H‐benzo[f]chromenes containing aza‐18‐crown‐6‐ether, diaza‐18‐crown‐6‐ether or morpholine units with alkali, alkaline earth, heavy and transition metal cations in acetonitrile is reported. The spectroscopic and kinetic behavior of the photomerocyanine isomers of these chromenes is strongly affected by complexation with a metal cation. In order to interpret some of experimental data, an ab initio theoretical analysis of photochromic‐crown ether and its cation complexes was conducted. The different site of coordination of mono‐ and divalent cations to determine the minimum‐energy structure of benzochromene complexes in gas phase as well as in acetonitrile as solvent was explored. The coordination of both carbonyl oxygen and crown‐ether macrocyle with divalent cations in carbonyl‐capped structure is found to be the most stable isomer in gas as well as in condensed media. The crown‐containing benzochromenes were studied in liquid‐liquid extraction experiments toward there capacity to transfer metallic salts from water into an organic phase.The high selectivity to extraction of Ag+ was found. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The partitioning of a hydrophobic hexapeptide, N‐acetyl‐tryptophan‐pentaleucine (AcWL5), into self‐associated β‐sheets within a vesicle membrane was studied as a model for integral membrane protein folding and insertion via vibrational and electronic spectroscopy. Ultraviolet resonance Raman spectroscopy allows selective examination of the structures of amino acid side chains and the peptide backbone and provides information about local environment and molecular conformation. The secondary structure of AcWL5 within a vesicle membrane was investigated using 207.5‐nm excitation and found to consist of β‐sheets, in agreement with previous studies. The β‐sheet peptide shows enhanced Raman scattering cross‐sections for all amide modes as well as extensive hydrogen‐bonding networks. Tryptophan vibrational structure was probed using 230‐nm excitation. Increases in Raman cross‐sections of tryptophan modes W1, W3, W7, W10, W16, W17, and W18 of membrane‐incorporated AcWL5 are primarily attributed to greater resonance enhancement with the Bb electronic transition. The W17 mode, however, undergoes a much greater enhancement than is expected for a simple resonance effect, and this observation is discussed in terms of hydrogen bonding of the indole ring in a hydrophobic environment. The observed tryptophan mode frequencies and intensities overall support a hydrophobic environment for the indole ring within a vesicle, and these results have implications for the location of tryptophan in membrane protein systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The Fourier transform Raman (FT‐Raman) and Fourier transform infrared (FT‐IR) spectra of 2‐[acetyl(4‐bromophenyl)carbamoyl]‐4‐chlorophenyl acetate were studied. The vibrational wavenumbers were examined theoretically using the Gaussian03 set of quantum chemistry codes, and the normal modes were assigned by potential energy distribution (PED) calculations. The simultaneous Raman and infrared (IR) activations of the CO stretching mode in the carbamoyl moiety show a charge transfer interaction through a π‐conjugated path. From the optimized structure, it is clear that the hydrogen bonding decreases the double bond character of the CO bond and increases the double bond character of the C N bonds. The first hyperpolarizability and predicted IR intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar structures, which makes this compound an attractive object for future studies of nonlinear optics. Optimized geometrical parameters of the compound are in agreement with similar reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The vibrational assignments of the observed wavenumbers have been made by analyzing the infrared and Raman spectra of L ‐valinium picrate in the crystalline state at room temperature. L ‐Valinium acts as the cation of the crystal and the carbonyl CO group exists in the protonated form in it. Asymmetric deformation and symmetric deformation modes of the isopropyl group have been identified, indicating that the two CH3 groups are in different environments. The stretching and bending modes of the various functional groups have been shifted owing to the extensive intermolecular hydrogen bonding in the crystal. The symmetry of the picrate anion has not been modified in the crystal by the hydrogen bonding with the cation. Fermi resonance is also observed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Fourier transform (FT)‐Raman and Fourier transform infrared (FT‐IR) spectra of 3‐{[(4‐fluorophenyl)methylene]amino}‐2‐phenylquinazolin‐4(3H)‐one were recorded and analyzed. The vibrational wavenumbers of the title compound were computed using the B3LYP/6‐31G* basis and compared with the experimental data. The prepared compound was identified by NMR and mass spectra. The simultaneous IR and Raman activation of the CO stretching mode shows a charge transfer interaction through a π‐conjugated path. The first hyperpolarizability and infrared intensities are reported. The assignments of the normal modes are done by potential energy distribution (PED) calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
For the first time, the mutual influences of the intramolecular hydrogen bond (IMHB) and cation–π interactions in various complexes of salicylaldehyde, thiosalicylaldehyde and selenosalicylaldehyde with Li+, Na+, K+, Mg2+ and Ca2+ cations were studied. First, the strength of IMHB and cation–π interactions of the mentioned complexes by energetic, geometrical, spectroscopic, topological and molecular orbital parameters was evaluated and compared with the corresponding results of benzene–cation complexes and salicylaldehyde analogues. The results show that the coexistence of IMHB and cation–π interactions increases the IMHB strength and decreases the cation–π interactions. Second, the significance of π–electron delocalisation (π–ED) within the resonance-assisted hydrogen bond (RAHB) unit and aromaticity of benzene ring in the studied complexes were estimated by using the harmonic oscillator model of aromaticity and compared with the respective amounts of references. The results indicated that the mentioned coupling decreases the π–ED of RAHB unit and aromaticity of the benzene ring. In addition, it was found that variations in the strength of the interactions, π–ED and aromaticity, depend on the charge-to-radius ratio of cations. Finally, the effects of replacement of O by S and Se atoms in both of the mentioned cases were explored.  相似文献   

7.
Fourier transform infrared (FT‐IR) and Fourier transform (FT) Raman spectra of 3‐{[(2‐hydroxyphenyl)methylene]amino}‐2‐phenylquinazolin‐4(3H)‐one were recorded and analyzed. The vibrational wavenumbers of the title compound were computed using HF/6‐31G* and 6‐311G* basis sets and compared with experimental data. The assignments of the normal modes are done by potential energy distribution (PED)calculations. The prepared compound was identified by nuclear magnetic resonance (NMR) and mass spectra. Optimized geometrical parameters of the title compound are in agreement with reported structures. Shortening of CN bond lengths reveal the effect of resonance. The simultaneous IR and Raman activations of the CO stretching mode shows a charge transfer interaction through a π‐conjugated path. The first hyperpolarizability, infrared intensities and Raman activities are reported. The phenyl C C stretching modes are equally active as strong bands in both IR and Raman spectra, which are responsible for hyperpolarizability enhancement leading to nonlinear optical activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
FT‐IR and FT‐Raman spectra of 4‐chloro‐2‐(4‐bromophenylcarbamoyl)phenyl acetate were recorded and analyzed. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared (IR) spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighbouring oxygen atom. The simultaneous IR and Raman activations of the CO stretching mode give the charge transfer interaction through a π‐conjugated path. Optimized geometrical parameters of the title compound are in agreement with similar reported structures. From the optimized structure, it is clear that the hydrogen bonding decreases the double bond character of CO bond and increases the double bond character of the C N bonds. The first hyperpolarizability, predicted infrared intensities and Raman activities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive object for future studies of non‐linear optics. The assignments of the normal modes are done by potential energy distribution (PED) calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A concentration‐dependent Raman study of the ν(C Br) stretching and trigonal bending modes of 2‐ and 3‐Br‐pyridine (2Br‐p and 3Br‐p) in CH3OH was performed at different mole fractions of the reference molecule, 2Br‐p/3Br‐p, from 0.1 to 0.9 in order to understand the origin of blue/red wavenumber shifts of the vibrational modes due to hydrogen‐bond formation. The appearance of additional Raman bands in these binary systems at ∼617 cm−1in the case of 2Br‐p and at ∼618 cm−1 in the case of 3Br‐p compared to neat bromopyridine derivatives were attributed to specific hydrogen‐bonded complexes formed in the mixtures. The interpretation of experimental results is supported by density functional calculations on optimized geometries and vibrational wavenumbers of 2Br‐p and 3Br‐p and a series of hydrogen‐bonded complexes with methanol. The parameters obtained from these calculations were used for a qualitative explanation of the blue/red shifts. The wavenumber shifts and linewidth changes for the ν(C Br) stretching and trigonal bending modes as a function of concentration reveal that the caging effects leading to motional narrowing and diffusion‐causing line broadening are simultaneously operative, in addition to the blue shift caused due to hydrogen bonding. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Imidazolium‐based ionic liquids (ILs) involving anions of variable coordinating strength have been investigated using infrared (IR) and Raman spectroscopies, density functional theory (DFT) calculations and selective deuteration of the imidazolium CH groups. Particular emphasis has been placed on the vibrational assignments of the anion and cation internal vibrations, a prerequisite before any interpretation of spectral changes due to ion–ion interactions in these unconventional liquids. The vibrations of highly symmetric and weakly coordinating anions, such as PF6, have unperturbed wavenumbers, but unexpected IR or Raman activity for some modes, showing that the anion is subjected to an anisotropic electric field. The stretching as well as the in‐plane and out‐of‐plane bending modes of the imidazolium CH groups are anharmonic. They give broad bands that reflect a large distribution of interactions with the surrounding anions. All the bending modes are mixed with ring vibrations and the stretching modes are complicated by Fermi resonance interactions with overtones and combination of in‐plane ring modes. However, the stretching vibration of the quasi‐diatomic C(2) D bond appears to be a good spectroscopic probe of the increasing cation–anion interactions when the coordinating strength of the anion increases. The broad absorption observed in the far IR with weakly coordinating anions remains practically unchanged when the acidic C(2) H imidazolium bond is methylated and even when the imidazolium cation is substituted by tetra‐alkyl ammonium or pyrrolidinium cations. It is concluded that this absorption is a general feature of any IL, coming from the relative translational and librational motions of the ions without needing to invoke C(2) H anion hydrogen bonds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A new derivative of the previously reported 1,2‐bis(benzimidazol‐2‐yl)ethane motif, cation [1H2]2+, was synthesized under microwave irradiation and fully characterized by solution NMR, high‐resolution mass spectrometry, cyclic voltammetry and X‐ray crystallography. This cation presents a linear geometry and incorporates nitro substituents as electrochemical handles. In solution, cation [1H2]2+, is capable of threading the cavity of dibenzo‐24‐crown‐8 ether host (DB24C8) giving rise to a [2]pseudorotaxane complex [1H2?DB24C8]2+, regardless of the counterion, [CF3SO3]? or [CF3COO] ?. The interpenetrated structure of [1H2?DB24C8]2+ was proven by solution NMR and X‐ray crystallography. This host–guest complex is held together by several non‐covalent interactions, such as hydrogen bonding and ion‐dipole. An electrochemical study of [1H2]2+ in the presence of variable amounts of DB24C8 was performed; due to the irreversible redox behavior of cation [1H2]2+, it was not possible to electrochemically control the association/dissociation process with DB24C8. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
An earlier study fit calculated dynamic 13C‐NMR spectra in trifluoroacetic acid (TFA) (with added sulfuric acid) to slow exchange between N‐protonated and O‐protonated tautomers of 1‐azabicyclo[3.3.1]nonan‐2‐one. The present study reports simultaneous observation of both carbonyl 13C peaks in 40% sulfuric acid/60% TFA at ?40 °C. This furnishes the only example in which experimental carbonyl 13C chemical shifts may be compared with a neutral lactam (in TFA or CDCl3) with its N‐protonated and O‐protonated derivatives. The seemingly anomalous upfield chemical shifts (experimental and computational) of the 13C carbonyl peaks in this N‐protonated lactam (and other twisted N‐protonated lactams) relative to the free bases are compared with data for unstrained protonated lactams and amides. The results are rationalized through conventional resonance structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Some initial acid‐catalytic reactions involved in the synthesis of the urea‐formaldehyde resin were theoretically investigated at B3LYP and MP2 levels with solvent effects included. The results suggest that the addition between urea and formaldehyde in neutral condition undergoes with a concerted mechanism represented by a four‐member ring transition state. For this reaction, a notable barrier (above 130 kJ/mol) was identified at all theoretical levels. The reactions between urea and different protonated forms of formaldehyde in acid solution were investigated. The reaction between protonated methanediol with urea can produce the methylol urea cation via an SN2 transition state with a lower barrier of 54.8 kJ/mol. With the mediation of a water molecule, the intra‐molecular proton transfer produces the stable methylol carbonium (NH2CONHCH2+), which plays an important role in the following formation of methylene and methylene ether linkages. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
1H and 13C NMR studies and quantum chemical calculations show the interaction between 2,11‐dithia‐5,6,8,9‐tetramethyl[32](1,4)cyclophane and nitrosonium cation to result in the formation of π‐ and n‐complexes. According to DFT/B3LYP/6‐31G(2d,p) calculations, formation of nitrosonium complexes is a strongly exothermic process both in gas phase and in SO2. Affinity of single‐charged complexes to NO+ is usually larger than that of double‐charged and triple‐charged complexes, affinity of all the charged complexes to nitrosonium cation in SO2 being larger than that in gas phase. The π‐complex with nitrosonium cation coordinated to the methylated aromatic ring is the most stable with structural characteristics being close to those obtained by X‐ray diffraction for nitrosonium π‐complexes of hexamethylbenzene and other arenes. The N―O bond lengths in all the complexes are quite close to each other and larger than that in NO+ cation. The S―N bond length increases upon transition from single‐charged to double‐charged and polycharged complexes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A novel ditopic receptor was constructed as a combination of bisthiophene with pyridinylvinyl and crown‐containing styryl fragments. In the receptor, the pyridine residue was able to coordinate Fe2+, Cd2+, and Mg2+ metal cations, whereas the oxocrown ether moiety bound with the alkaline earth metal (Mg2+, Ca2+, and Ba2+) cations. 1H NMR, optical, electrochemical, and ESI‐MS results provided conclusive evidence of a complex formation through both the coordination centers of the molecule. The obtained results showed that cation complexation induces optical and electrochemical changes, particularly for each binding center. This type of multiparameter sensor provides interesting perspectives for the future design of unique sensors, promising different analytical techniques. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
As part of the efforts for the design of new organic nonlinear optical(NLO) materials with high efficiency for present day technological requirements, a comprehensive investigation on the intramolecular charge transfer(CT) of an efficient π‐conjugated potential push–pull NLO chromophore, ethyl‐3‐(3,4‐dihydroxyphenyl)‐2‐propenoate(EDP) to a strong electron‐acceptor group through the π‐conjugated bridge has been carried out from their vibrational spectra. The first hyperpolarizabilities of caffeic derivatives are investigated by ab initio method. The NLO efficiency is experimentally measured by powder efficiency experiment. The strongest vibrational modes contributing to the electro‐optic effect from the simultaneous infrared(IR) and Raman activities of the ring CC stretching modes, in‐plane deformation modes, and the umbrella mode of the methyl groups have been identified and analyzed unambiguously. The influence of electronic effects, hyperconjugation and backdonation, on the C H stretching vibrations of both methyl and methylene groups causing the decrease of stretching wavenumbers and IR intensities has been extensively investigated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
This research concerns the analysis of the binding properties of benzodiaza‐15‐crown‐5 ether derivatives towards different metal ions (Mg(II), Cd(II), Ni(II), Cu(II), Zn(II), Pb(II), Hg(II) and Ag(I)) in acetonitrile and water by potentiometric and optical methods. Benzodiaza‐15‐crown‐5 ether demonstrates high binding affinity towards Hg2+ (lg K11 = 12.7), whereas the stability constants of complexes with other studied cations varied from 3 to 6 logarithmic units. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A novel fluorescent switchable chemosensor 1 , which is composed of an anthracene‐modified calix[4]crown in the 1,3‐alternate conformation, was calculated by density functional theory and time‐dependent density functional theory method. Geometries, molecular orbitals and binding thermal energies were evaluated at the restricted hybrid Becke's three‐parameter exchange functional using 6‐31 G(d) basis set and relativistic effective core potentials. The metal–ligand and cation–π interactions were investigated acting as two main types of driving force. Our calculations clearly show that solvent effects strongly influence cation selectivity, and K+ selectivity is recovered when even a few waters of hydration are considered. The calculations indicate that because of the photoinduced electron transfer effect, the addition of alkali metal ions have hardly any effect on the fluorescence of ligand 1 under neutral or basic conditions. Also, the high selectivity of ligand 1 for K+ and Rb+, under acidic conditions, the complexed metal ion can result in ammonium ion deprotonation, which leads to quenching of fluorescence of 1 ?H+. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Ultraviolet Resonance Raman (UVRR) spectroscopy—a Raman technique that combines high sensitivity with high selectivity and does not suffer from background fluorescence—is applied to the fluorescent H1 antihistamines tripelennamine (TRP) and mepyramine (MEP) in aqueous solution to elucidate their molecular structure as a function of pH. In a previous investigation of these compounds (C. Tardioli, G. Gooijer G. van der Zwan, J. Phys. Chem. B, 113 , (2009), 6949), the presence of gauche conformers caused by intramolecular interaction of the protonated alkylamine tail with the pyridine nitrogen was assumed to explain the pH dependence of the fluorescence properties. In order to validate this assumption, use is made of the resonant excitation of the aminopyridine chromophore in TRP and MEP. In that way, structural information associated with the vibrations of that moiety can be obtained, and the changes it undergoes upon protonation can be monitored. Assignment of the vibrations was achieved with the help of a number of other compounds, and quantum chemical calculations. N,N‐Dimethylaminopyridine (2DMP) and its mono‐protonated form (2DMPH+) were investigated, since this molecule was shown to have optical properties closely resembling those of the aminopyridine moiety in TRP and MEP. Assignment of the vibrations of 2DMP was accomplished by comparison with the resonance Raman spectra of two other reference structures, 2‐aminopyridine and dimethylaniline—for which ordinary Raman data are available—and by Gaussian calculations. UVRR spectra of TRP and MEP could be readily interpreted on the basis of vibrational assignments of the parent chromophores, i.e. 2DMP and 2DMPH+. Vibrations of the aminopyridine chromophore in TRP and MEP at neutral pH, where the aminoalkyl chain is protonated, are modified when compared to the vibrational pattern recorded for a fully neutral molecule in alkaline solution. This implies an electronic redistribution in the ring originating from internal hydrogen bonding between the aminoalkyl tail and the aminopyridine chromophore. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐ethyl‐N‐(2′‐hydroxy‐5′‐nitrophenyl)benzamide were recorded and analyzed. A surface‐enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared spectrum from the computational wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO stretching mode gives the charge transfer interaction through a π‐conjugated path. The presence of methyl modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface, which affects the orientation and metal molecule interaction. The first hyperpolarizability and predicted infrared intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive subject for future studies of nonlinear optics. Optimized geometrical parameters of the title compound are in agreement with reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号