首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and general microwave route is developed to synthesize nanostructured ZnO using Zn(acac)2·H2O (acac = acetylacetonate) as a single source precursor. The reaction time has a great influence on the morphology of the ZnO nanostructures and an interesting spindle‐like nanostructure is obtained. The microstructure and morphology of the synthesized materials are investigated by X‐ray diffraction (XRD), scanning electron microscopy (SEM), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). It is found that all of them with hexagonal wurtzite phase are of single crystalline structure in nature. Ultraviolet–visible (UV‐vis) absorption spectra of these ZnO nanostructures are investigated and a possible formation mechanism for the spindle‐like ZnO nanostructures is also proposed.  相似文献   

2.
Nanoplates, flower‐like nanostructure of ZnO were successfully synthesized by employing ZnSO4·7H2O, NaOH as the starting materials at 120°C under hydrothermal condition. Keeping the same parameters, ZnO urchin shape was obtained by addition of vitamin C at 190°C. Characterizations were carried out by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) at room temperature. Selected area electron diffraction (SAED) pattern confirms that the product is single crystalline nature. The possible formation mechanisms for synthesized ZnO nanosturcture with various morphologies have also been proposed. PL spectrum from the ZnO flower‐like structures reveals weak UV emission and strong green emission. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Flower‐like hierarchical nanostructures of titanium dioxide (TiO2) have been synthesized in large scale by a facile and controlled hydrothermal and after annealing process. The morphologies of flower‐like hierarchical nanostructures are formed by self‐organization of several tens of radially distributed thin flakes with a thickness of several nanometers holding a larger surface area. The materials are characterized by Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X‐ray diffraction (XRD). The ultraviolet photocatalytic degradation of R6G dyes has been studied over this flower‐like hierarchical nanostructures and the activity is compared with that of commercial P25 TiO2 under same conditions. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Uniform capsule‐like α‐Fe2O3 particles were synthesized via a simple hydrothermal method, employing FeCl3 and CH3COONa as the precursors and sodium dodecyl sulfate (SDS) as soft template. X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), and high‐resolution transmission electron microscopy were used to characterize the structure of synthesized products. Some factors influencing the formation of capsule‐like α‐Fe2O3 particles were systematically investigated, including different kinds of surfactants, the concentration of SDS, and reaction times. The investigation on the evolution formation reveals that SDS was critical to control the morphology of final products, and a possible five‐step growth mechanism was presented by tracking the structures of the products at different reaction stages.  相似文献   

5.
ZnO nanostructures with various morphologies including rod‐like, sheet‐like, needle‐like and flower‐like structures were successfully synthesized via a fast and facile microwave‐assisted hydrothermal process. Reaction temperature, reaction time and the addition of NaOH were adjusted to obtain ZnO with different morphologies. Scanning electron microscopy(SEM), transmission electron microscope(TEM), X‐ray diffraction (XRD) and ultraviolet spectrophotometer (UV) were used to observe the morphology, crystal structure, ultraviolet absorption and photocatalytic activity of the obtained ZnO. The results indicated that growth rate of ZnO nanostructure along [001] direction was more sensitive to temperature compared with those along [101] and [100] directions. The competition between anionic surfactant and OH played an important role in the formation of ZnO with various morphologies. Flower‐like ZnO had better ultraviolet absorption property and excellent photocatalytic activity than ZnO in the other morphologies. On the basis of the above results, a possible growth mechanism for the formation of ZnO nanostructures with different morphologies was described.  相似文献   

6.
Two kinds of hollow twinning ZnO microstructures were synthesized through a simple hydrothermal method without additional templates or any surfactants. Dumbbell‐like and shuttle‐like ZnO microstructures with hollows were obtained by changing the materials source. The products were characterized by X‐ray power diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high‐resolution transmission electron microscopy (HRTEM). It was found that different precursors may be responsible for the formation of two different morphologies. Based on the time‐dependent experiments, we investigated the growth process of these hollow twinning structures and found the “Ostwald‐ripening process” played an important role. The interesting point of this growth process was that the interface of the two twinning structure performed as the activate center where the Ostwald‐ripening process carried out. We also investigated the luminescent properties of the as‐obtained products by photoluminescence (PL) spectroscopy. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
ZnO/α‐Fe2O3 nanocomposites were fabricated through a two‐step hydrothermal method. The morphology and composition of the as‐synthesized products were characterized by X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), energy‐dispersive X‐ray spectroscopy (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The gas sensing properties of the fabricated products were investigated towards ethanol, acetone, propanol, isopropanol, formaldehyde, chloroform and so on. The results demonstrated that the ZnO/α‐Fe2O3 nanocomposites exhibited excellent sensing properties and showed remarkably higher sensing responses and much lower optimum operating temperature compared to individual ZnO and α‐Fe2O3. In addition, the ZnO/α‐Fe2O3 nanocomposites have some selectivity for ethanol, propanol and isopropanol. The possible gas sensing mechanism was also proposed. Our studies demonstrate that our fabricated materials could be widely used in the future.  相似文献   

8.
Zinc sulfide (ZnS) microspheres were synthesized by a self‐template hydrothermal route using thiourea as sulphur source. The formation of these hollow spheres was mainly attributed to the oriented aggregation of ZnS nanocystals around the gas‐liquid interface between gas (H2S, NH3, or CO2) and water followed by an Ostwald ripening process. The gas bubbles of H2S, NH3, or CO2 produced during the reaction might play a soft‐template to form ZnS hollow microspheres. The products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), electron diffraction (ED), and photoluminescence (PL). The crystal structure of prepared ZnS microspheres is hexagonal phase polycrystalline. The average microspheres diameter is 1.5 ‐ 6 µm. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Spindle‐shaped α‐FeOOH nanocrystals were facilely synthesized using a poly (vinyl pyrrolidone) (PVP)‐assisted route under hydrothermal conditions. The chemical compositions and morphol‐ogies of the as‐prepared samples were characterized in detail by X‐ray power diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). The experimental results reveal that these spindle‐shaped α‐FeOOH nanocrystals have self‐organized into assemblies with hierarchical nanostructures. The crucial roles of PVP in the hydrothermal synthesis of hierarchical α‐FeOOH nanostructures were discussed. The possible formation mechanism was also suggested. Moreover, the spindle‐shaped α‐Fe2O3 nanocrystals could be easily obtained after calcining the α‐FeOOH prepared by the PVP‐assisted hydrothermal process. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Large‐scale star‐like PbWO4 hierarchical architectures were controllably synthesized by a facile surfactant‐assisted technology under mild conditions in the presence of a mixed solvent of ethylene glycol and water. The morphology, structure, and phase composition of PbWO4 architectures were characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FE‐SEM), field emission transmission electron microscopy (FE‐TEM), and nitrogen adsorption‐desorption isotherms. The possible formation mechanism of the star‐like PbWO4 architectures (initial nucleating stage and a subsequent self‐assembly stage) was proposed based on the observations from a time‐dependent morphology evolution process, which may pave the way to shape‐controlled synthesis of inorganic nanocrystals with the complex structures. This route provides a facile strategy to fabricate complex hierarchical PbWO4 structures. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
A zinc oxide (ZnO) nanoarray (rod‐like nanostructure) was successfully synthesized through a low‐temperature aqueous solution and microwave‐assisted synthesis using zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMTA) as raw materials, and using FTO glass as substrate. The effects of parameters in the preparation process, such as solution concentration, reaction temperature and microwave power, on the morphology and microstructure of ZnO nanoarray were studied. Phase structure and morphology of the products were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results indicated that hexagonal wurtzite structure ZnO nanoarray with good crystallization could be prepared through a low‐temperature solution method. When the concentration of the mixed solution was 0.05 M, the reaction temperature was 95 °C, and the reaction time was 4 h, high‐density ZnO regular nanorods of 200 nm diameter were obtained. A possible mechanism with different synthesis methods and the influence of microwave processing are also proposed in this paper.  相似文献   

12.
The flower‐like ZnO with micro‐nano hierarchical structure is successfully obtained by a simple hydrothermal synthesis, using sodium dodecyl benzene sulfonate (SDBS) as a structure direct agent. The resulted ZnO micro‐flowers are very uniform in morphology with particle sizes around 1 µm. A number of techniques, including X‐ray diffraction (XRD), field emission scan electron microscopy (FESEM), energy‐dispersive spectroscopy (EDS), fourier transform infrared (FTIR) spectra and thermogravimetry analysis (TGA), are used to characterize the obtained ZnO. The self‐assemble of ZnO nano‐sheets under the direction of SDBS leads to the formation of ZnO micro‐flowers. The room temperature photoluminescence property of the obtained flower‐like ZnO exhibits a broad visible light emission. The surface of as‐made ZnO shows a very hydrophilic property, while the special micro‐nano hierarchical structure enables the ZnO micro‐flower a superhydrophobic surface after modification of fluoroalkylsilane.  相似文献   

13.
Dendrite and platelet‐like α‐Fe2O3 microcrystals were synthesized by the oxidation reaction of K4Fe(CN)6and NaClO3 through a simple hydrothermal method. The structures and morphologies of the as‐prepared samples were characterized in detail by X‐ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The experiment results show that NaOH played an important role in controlling the morphology of the final products. The possible mechanism was discussed to elucidate the formation of different morphologies of the α‐Fe2O3 microstructures. Besides, the magnetic property of the dendrite α‐Fe2O3 microstructure was characterized by a vibrating sample magnetometer (VSM). (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Large‐scale high‐quality BaMoO4 nanocrystals have been synthesized in aqueous solutions under mild conditions with citrate as a simple additive. The crystals have bone‐like, spindle‐like and wheatear‐like morphologies assembled from nanoparticles, nanofibers and have been characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. The results showed that experimental parameters had great influences on the shape evolution of products. The adjustment of these parameters such as room temperature stirring time, reaction temperature and reaction time of hydrothermal reaction, can lead to obvious morphology changes of products, and the growth mechanism has been proposed. Room‐temperature photoluminescence indicated that the as‐prepared BaMoO4 nanocrystals had a strong blue emission peak at 481.5 nm. This facile route could be employed to synthesize more promising nanomaterials with interesting self‐assembly structures. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Novel hierarchical nano materials possess tremendous latent force in many applications. In this paper, hierarchical flower‐like, spherical and bowl‐like zinc oxide was successfully synthesized by altering solvent ratio (absolute ethanol and diethylene glycol) via a simple and template‐free solvothermal synthetic route. The solvent ratio also plays a vital role in deciding the structure, crystalline, band gap energy and specific surface area of the as‐synthesized samples. The preparation mechanism of ZnO in mixed alcohols was discussed. The obtained samples were characterized by energy dispersive spectroscopy(EDS), X‐ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), N2 adsorption‐desorption, UV–vis diffuse reflectance spectroscopy (DRS). Photocatalytic activity of the as‐prepared ZnO nanocrystals was evaluated by the degradation of MB under UV irradiation. Among, the most effective photocatalyst was synthesized when the diethylene glycol was 10 ml.  相似文献   

16.
Large amounts of dumbbell‐like Sb2S3 microcrystals were synthesized via a simple solvothermal treatment method. Various techniques such as x‐ray diffraction (XRD), field‐emission scanning electron microscope (FESEM), high‐resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED), and photoluminescence spectrometry (PL) have been used to characterize the obtained products. The results showed that the products belong to the orthorhombic Sb2S3 phase, and the dumbbell‐like Sb2S3 microcrystals were composed by uniform microrods. Besides, the morphologies of Sb2S3 microcrystals could be changed from microshperes to dumbbell‐like microcrystals by only adjusting the reaction solvent. The solvent effects are discussed in detail. Furthermore, the PL properties of the obtained Sb2S3 microcrystals clearly show shape effects. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
A composite of graphene sheets decorated with molybdenum trioxide (MoO3) nanobelts has been fabricated via a facile and efficient hydrothermal route in the presence of NaCl. The structure, morphology of these promising composites were investigated by means of field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), Raman spectroscopy and thermogravimetric (TG) analysis. FESEM and TEM studies suggest the presence of uniform crystalline MoO3 nanobelts and graphene sheets in as‐prepared hybrid materials. XRD and Raman results confirm the reduction of graphite oxide (GO) sheets to graphene sheets accompanying by the formation of MoO3 nanobelts. Moreover, thermal properties of GO and MoO3 nanobelt‐graphene composites reveal that thermal stability of the obtained MoO3 nanobelt‐graphene composites is obviously higher than that of GO due to the transformation of GO sheets to highly stable graphene sheets in the hybrids. This work could provide new insights into the fabrication of high quality MoO3‐graphene hybrid nanomaterials and facilitate their potential applications in different fields. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Crystallization of calcium carbonate (CaCO3) crystals by a gas‐liquid diffusion method has been carried out in aqueous solution using a double‐hydrophilic block copolymer (DHBC) poly(maleic anhydride)‐b‐poly(acrylic acid) (PMA‐b‐PAA). The as‐prepared products were characterized with X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), selected area electron diffraction (SAED), high‐resolution transmission electron microscopy (HRTEM) and infrared spectroscopic analysis (FT‐IR). Uniform one‐dimensional calcite micro/nanostructures with different morphologies are fabricated through an assembled process. The influence of PMA‐b‐PAA copolymer concentration on the morphology of calcite nano/microwires is investigated, which plays an important role in the morphological control of building blocks composed of one‐dimensional calcite crystals. The possible formation mechanism of one‐dimensional CaCO3 crystals was discussed. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
With a facile solvothermal method, Ag@Fe3O4 nanowire was successfully prepared and characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The obtained Ag@Fe3O4 nanowire posses enhanced peroxidase‐like activity with good stability and high absorbance. The optimization of pH, H2O2 concentration and loading capacity were carried out. The result of kinetic analysis indicates that the catalyzed reaction followed a Michaelis‐Menten behavior. The good peroxidase‐like activity makes Ag@Fe3O4 nanowire be promising for real application in biomedicine.  相似文献   

20.
Zirconium‐doped ceria hollow slightly‐truncated nano‐octahedrons (HTNOs) (Ce1‐xZrxO2) were synthesized by a one‐pot, facile hydrothermal method. The morphology and crystalline structure were characterized with powder X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and the high resolution transmission electron microscopy (HRTEM). The composition and chemical valence on the surface of the as‐prepared Ce1‐xZrxO2 powders were detected by X‐ray photoelectron spectroscopy (XPS) and energy dispersive spectrometry (EDS). The surface area and pore size distribution of as‐obtained Zr‐doped ceria HTNOs were measured by N2 adsorption‐desorption measurement. Mechanisms for the growth of Zr‐doped ceria HTNOs are proposed as both oriented attachment and Ostwald ripening process and the formation of the hollow structure is strongly dependent on the addition of Zr4+ ions. Furthermore, the as‐obtained Zr‐doped ceria HTNOs revealed superior catalytic activity and thermal stability toward CO oxidation compared to pure ceria. It may provide a new path for the fabrication of inorganic hollow structures on introducing alien metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号