首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infrared spectra of 1,2‐bis(trifluorosilyl)ethane (SiF3CH2CH2SiF3) were obtained in the vapour and liquid phases, in argon matrices and in the solid phase. Raman spectra of the compound as a liquid were recorded at various temperatures between 293 and 270 K and spectra of an apparently crystalline solid were observed. The spectra revealed the existence of two conformers (anti and gauche) in the vapour, liquid and in the matrix. When the vapour was chock‐frozen on a cold finger at 78 K and annealed to 150 K, certain weak Raman bands vanished in the crystal. The vibrational spectra of the crystal demonstrated mutual exclusion between IR and Raman bands in accordance with C2h symmetry. Intensity variations between 293 and 270 K of pairs of various Raman bands gave ΔH(gauche—anti) = 5.6 ± 0.5 kJ mol−1 in the liquid, suggesting 85% anti and 15% gauche in equilibrium at room temperature. Annealing experiments indicate that the anti conformer also has a lower energy in the argon matrices, is the low‐energy conformer in the liquid and is also present in the crystal. The spectra of both conformers have been interpreted, and 34 anti and 17 gauche bands were tentatively identified. Ab initio and density functional theory (DFT) calculations were performed giving optimized geometries, infrared and Raman intensities and anharmonic vibrational frequencies for both conformers. The conformational energy difference derived in CBS‐QB3 and in G3 calculations was 5 kJ mol−1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The polarized Raman and reflection spectra of a single crystal YbAl3(BO3)4 at room temperature were studied. Raman active vibrational modes A 1, E TO, and E LO are identified. In the Raman spectrum, we detected an intense line at a frequency of 1018 cm−1, which refers to internal vibrations of the BO3 group and is known to be promising for use in amplifiers based on stimulated Raman scattering. From the simulation of reflection spectra by the method of dispersion analysis the frequencies of A 2 vibrational modes were determined. Intense bands observed in the low-temperature transmission spectra in the range of f-f transitions in the Yb3+ ion are attributed to electron-phonon transitions. The Raman lines are compared with electron-phonon lines in the transmission spectrum.  相似文献   

3.
The oriented single‐crystal Raman spectrum of leiteite has been obtained and the spectra related to the structure of the mineral. The intensities of the observed bands vary according to orientation, allowing them to be assigned to either Ag or Bg modes. Ag bands are generally the most intense in the CAAC spectrum, followed by ACCA, CBBC, and ABBA whereas Bg bands are generally the most intense in the CBAC followed by ABCA. The CAAC and ACCA spectra are identical, as are those obtained in the CBBC and ABBA orientations. Both cross‐polarised spectra are identical. Band assignments were made with respect to bridging and non‐bridging As O bonds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Room‐temperature polarized Raman spectra of a single crystal and IR spectra of a polycrystalline sample were measured for [N(C2H5)4]2MnCl4 and the assignment of the observed bands to the respective modes has been proposed. Temperature‐dependent Raman and far‐IR studies were also performed for the polycrystalline sample in order to obtain information on changes occurring in this material as a result of phase transitions at T1 = 227 K and at T2 = 199 K. These studies revealed that the higher‐temperature ferroelastic phase transition is associated with significant modification of vibrational properties due to ordering of tetraethylammonium groups. The lower‐temperature phase transition does not lead to any clear changes in the spectra. However, our results suggest that disorder of MnCl42− ions decreases with decreasing temperature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
A theoretical Raman polarization analysis is proposed for the corundum structure of sapphire (α‐Al2O3) and validation experiments conducted with the purpose of retrieving the full set of phonon deformation potentials (PDPs). From the theoretical side, the change in force constants under stress/strain has been expressed in matrix form, and close‐form solutions were obtained for the eigenvalues that take into account the local dependence of oblique phonons on crystallographic orientation (i.e. uncoupling the effects of local crystal orientation and stress tensor from the shifts of Raman bands). From the experimental side, controlled (uniaxial) stress fields were applied to sapphire parallelepiped bars (along known crystallographic axes) while Raman spectra were systematically recorded along the bar thickness. An untextured alumina polycrystal with fine grain size was also investigated according to the same procedure. As a result of this set of experiments, PDPs for both A1g and Eg vibrational bands could be retrieved. Validation of PDP constants was obtained by measuring the steeply graded stress fields developed ahead of a surface crack propagated along an arbitrary crystallographic direction in the R‐plane of the sapphire crystal. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Polarized Fourier transform‐infrared (FT‐IR) reflectance spectra and powder Raman spectra have been measured for 1,3‐dinitrobenzene crystal in order to revise the assignments of bands by means of the oriented gas model reinforced with quantum chemical [density functional theory (DFT)] calculations. Longitudinal optical/transverse optical (LO‐TO) splitting of some bands is observed indicating medium strong, long‐range, dipole–dipole interactions. The analysis of overtones in the polarized FT‐NIR spectra has allowed us to estimate the anharmonicity of vibrations in the crystal. The molecular motions of the nitro groups are analyzed on the basis of temperature‐dependent polycrystalline IR spectra. Based on the values of the energy difference (Δνel) between the forbidden A1g→B2u transition in the benzene molecule in the gas phase and the first electronic transition in 1,3‐dinitrobenzene, it has been concluded that the intermolecular interactions are medium strong. The nitro group interactions are proposed to play the main role in the optical nonlinearity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

The infrared spectra of 2-(methylthio)benzothiazole have been measured from 4000 to 180 cm?1 for liquid and polycrystalline samples, polarized spectra of oriented films have also been obtained. the Raman spectra of polycrystalline and liquid samples have been investigated. the structural parameters, energies and vibrational frequencies have been calculated from ab-initio RHF calculations using the 6-31G?? basis set for various conformations. a detailed assignment of most of the observed bands has been proposed on the basis of the infrared dichroism, Raman polarization data and frequency calculations.  相似文献   

8.
Vibrational (infrared and Raman) spectroscopy has been used to characterize SiOxNy and SiOx films prepared by magnetron sputtering on steel and silicon substrates. Interference bands in the infrared reflectivity measurements provided the film thickness and the dielectric function of the films. Vibrational modes bands were obtained both from infrared and Raman spectra providing useful information on the bonding structure and the microstructure (formation of nano-voids in some coatings) for these amorphous (or nanocrystalline) coatings. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) analysis have also been carried out to determine the composition and texture of the films, and to correlate these data with the vibrational spectroscopy studies. The angular dependence of the reflectivity spectra provides the dispersion of vibrational and interference polaritons modes, what allows to separate these two types of bands especially in the frequency regions where overlaps/resonances occurred. Finally the attenuated total reflection Fourier transform infrared measurements have been also carried out demonstrating the feasibility and high sensitivity of the technique. Comparison of the spectra of the SiOxNy films prepared in various conditions demonstrates how films can be prepared from pure silicon oxide to silicon oxynitride with reduced oxygen content.  相似文献   

9.
We report room temperature measurements of X‐ray diffraction (XRD), optical transmission microscopy (OTM), atomic force microscopy (AFM), infrared‐absorption (IR), and micro‐Raman spectroscopy (µ‐RS) of the oriented SAT0.3: LA0.075: CAT0.625 single crystal. The final structure refinement of SAT0.3: LA0.075: CAT0.625 crystal was performed for I4/m space group at room temperature. Vibrational spectra of the crystal were discussed in terms of group‐theoretical predictions for untilted (Fm3 m) and tilted tetragonal (I4/m) perovskite structure. The confocal µ‐Raman measurements of depth profiling of SAT0.3: LA0.075: CAT0.625 crystal suggest a relationship between sensitivities of the ordering‐related Raman‐active modes and the variation of order parameter η. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Self‐assembled organic–inorganic [C6H14N]PbI3 crystals were synthesized. The crystal structure consists of one‐dimensional semiconductor chains formed by infinite PbI6 face‐sharing octahedra aligned along the a‐axis. The organic cations are linked to the inorganic chains by N H· · ·I hydrogen bonds and act as insulator barriers. The vibrational properties of [C6H14N]PbI3 were studied using polarized Raman scattering and infrared (IR) absorption. The observed Raman and IR spectral features were identified by comparison with the vibrational properties of homologous compounds and with the vibrational wavenumbers calculated using the ab initio PM3 method. Moreover, the photoluminescence and diffuse reflectance of [C6H14N]PbI3 single crystals, along with the UV‐Vis absorption of spin‐ coated films, were measured. A strong green‐blue luminescence due to radiative recombinations of 1D excitons is observed. The Stokes shift is estimated at 70 meV. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
We report on the infrared (IR) and Raman studies of the three isostructural quasi‐one‐dimensional cation radical salts of 3,4‐dimethyl‐tetrathiafulvalene (o‐DMTTF)2X (X = Cl, Br, and I), which all exhibit metallic properties at room temperature and undergo transitions to a semiconducting state in two steps: a soft metal‐to‐semiconductor regime change in the temperature region Tρ = 5–200 K and then a sharp phase transition at about TMI = 50 K. Polarized IR reflectance spectra (700–16 000 cm−1) and Raman spectra (50–3500 cm−1, excitation λ = 632.8 nm) of single crystals were measured as a function of temperature (T = 5–300 K) to assess the eventual formation of a charge‐ordered state below 50 K. Additionally, the temperature dependence of the IR absorption spectra of powdered crystals in KBr discs was also studied. The Raman spectra and especially the bands related to the CC stretching vibration of o‐DMTTF provide unambiguous evidence of uniform charge distribution on o‐DMTTF down to the lowest temperatures, without any modification below 50 K. However, the temperature dependence of Raman spectra indicates a regime change below about 200 K. Temperature dependence of both electronic dispersion and vibrational features observed in the IR spectra also clearly confirms the regime change below about 200 K and shows the involvement of C H···X hydrogen bonds in the electronic localization; some spectral changes can be also related with the phase transition at 50 K. Additionally, using density functional theory methods, the normal vibrational modes of the neutral o‐DMTTF0 and cationic o‐DMTTF+ species, as well as their theoretical IR and Raman spectra, were calculated. The theoretical data were compared with the experimental IR and Raman spectra of neutral o‐DMTTF molecule. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
采用固相烧结法制备了六方晶型结构的MgTiO3粉体. 经高温原位X射线衍射分析(293-1473 K)进行了表征与确认,获得了晶胞参数及其随温度的变化,测量了高温原位拉曼光谱(273-1623 K),并运用第一性原理理论计算方法对应核实了拉曼谱峰的归属. 结果表明,随着温度升高,MgTiO3晶面间距和晶格常数增大,从而反映对于拉曼光谱较为敏感的键长和键角的变化;温致拉曼位移可以反映Ti-O,Mg-O等键长以及Ti-O-Ti,Ti-O-Mg与Mg-O-Mg等键角随温度的细微变化,相关关系则独立于温度,有效提升了原位拉曼光谱微探针诊断技术的分析能力;拉曼谱峰随温度升高而展宽,表明原子瞬间运动振幅加剧,弥散性增加,稳定性有所下降,但仍维持六方晶型. 关键词: 3')" href="#">MgTiO3 微结构 拉曼光谱 高温  相似文献   

13.
Polarized Raman spectra of the Bi2TeO5 single crystal have been investigated for the first time. The group-theoretic analysis of the first-order vibrational spectra is performed. The number of the experimentally observed bands is less than the predicted number of normal modes. The spectral ranges with similar bands are revealed. Some ranges in the spectra of Bi2TeO5 are identified from the spectral data for the materials containing bismuth-oxygen and tellurium-oxygen complexes.  相似文献   

14.
The optimized geometry and structural features of the most prospective electro‐optic crystal 4‐(N,N‐dimethylamino)‐N‐methyl‐4′‐toluene sulfonate (DAST), and the vibrational spectral investigations have been comprehensively described with the near infrared Fourier transform (NIR FT) Raman and Fourier transform infrared (FT‐IR) spectra supported by the density functional theoretical (DFT) computations to elucidate the contribution of vibrational modes to the linear electro‐optic (LEO) effect. Mulliken population analysis and natural bond orbital (NBO) analysis have also been carried out to analyze the effects of intramolecular charge transfer (ICT), intramolecular hydrogen bonding and hyperconjugative interactions on the geometries. The influence of CT interaction between the phenyl ring and the dimethylamino group of the nonlinear optical (NLO) chromophore on the endocyclic and exocyclic angles, and the electronic effects such as hyperconjugation and back‐donation on the methyl hydrogen atoms have been examined. The concurrent intense activation of Raman and IR activities of the effective conjugation vibrational coordinate, which significantly contributes to the LEO effect resulting from the strong electron–phonon (e/ph) coupling, has been analyzed in detail. The effects of frontier orbitals, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), transition of electron density (ED) transfer and the influence of planarity in the stilbazolium ring on the first hyperpolarizability are also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Raman and infrared spectra are reported for rhodanine, 3‐aminorhodanine and 3‐methylrhodanine in the solid state. Comparisons of the spectra of non‐deuterated/deuterated species facilitate discrimination of the bands associated with N H, NH2, CH2 and CH3 vibrations. DFT calculations of structures and vibrational spectra of isolated gas‐phase molecules, at the B3‐LYP/cc‐pVTZ and B3‐PW91/cc‐pVTZ level, enable normal coordinate analyses in terms of potential energy distributions for each vibrational normal mode. The cis amide I mode of rhodanine is associated with bands at ∼1713 and 1779 cm−1, whereas a Raman and IR band at ∼1457 cm−1 is assigned to the amide II mode. The thioamide II and III modes of rhodanine, 3‐aminorhodanine and 3‐methylrhodanine are observed at 1176 and 1066/1078; 1158 and 1044; 1107 and 984 cm−1 in the Raman and at 1187 and 1083; 1179 and 1074; 1116 and 983 cm−1 in the IR spectra, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
We report a resonance Raman study on free‐base tetraphenylporphine (H2TPP) and its chemically prepared diacid dispersed in polymethylcyanoacrylate (PMCA). Photoexcitation of the neutral porphine by laser light leads irreversibly to the formation of the diacid, with the π‐cation radical as intermediate species. Resonance Raman (RR) spectra of the diacid dispersed in the polymer obtained with 441.6 nm in the wavenumber region of 100–1650 cm−1 are recorded. Wavenumbers with other excitation lines are also reported for the diacid species. Some bands assigned to out‐of‐plane vibrational modes and forbidden under ideal D2h symmetry are also observed in the resonance Raman spectra of the diacid. These bands arise from the out‐of‐plane distortions, which reduce the symmetry of the molecule. These findings are supported by the electronic absorption studies of the diacid in the polymer. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Natural resonance electronic Raman optical activity (ROA) is observed for the first time. Coincidently, the first example of vibrational ROA enhanced by low‐lying electronic transition is reported. These new phenomena were measured using the rare‐earth complex Eu(tfc)3 (+)‐tris[3‐trifluoroacetyl‐D ‐camphorato]europium(III), where electronic resonance occurs between the 532‐nm laser excitation and the 7F15D1 transition of the Eu3+ metal center. Electronic Raman spectra involve the Raman transitions terminating on the low‐lying electronic states of Eu(tfc)3. The observed vibrational ROA spectra are enhanced relative to typical ROA spectra by the proximity of vibrational states of Eu(tfc)3 to its low‐lying electronic states with significant magnetic‐dipole character, whereas the parent vibrational Raman spectra do not appear to be resonance‐enhanced since the 532‐nm vibrational Raman spectrum has similar relative intensities to the corresponding Raman spectrum measured with 1064‐nm laser excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Raman and infrared spectra of the uranyl mineral zellerite, Ca[(UO2)(CO3)2(H2O)2]·3H2O, were measured and tentatively interpreted. U O bond in uranyl and O H···O hydrogen bonds were calculated from the vibrational spectra. The presence of structurally nonequivalent water molecules in the crystal structure of zellerite was inferred. A proposed chemical formula of zellerite is supported. Raman bands at 3514, 3375 and 2945 cm−1and broad infrared bands at 3513, 3396 and 3326 cm−1 are related to the ν OH stretching vibrations of hydrogen‐bonded water molecules. Observed wavenumbers of these vibrations prove that in fact hydrogen bonds participate in the crystal structure of zellerite. The presence of two bands at 1618 and 1681 cm−1 proves structurally distinct and nonequivalent water molecules in the crystal structure of zellerite. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Two different polymorphs of carbonic acid, α‐ and β‐H2CO3, were identified and characterized using infrared spectroscopy (FT‐IR) previously. Our attempts to determine the crystal structures of these two polymorphs using powder and thin‐film X‐ray diffraction techniques have failed so far. Here, we report the Raman spectrum of the α‐polymorph, compare it with its FT‐IR spectrum and present band assignments in line with our work on the β‐polymorph [Angew. Chem. Int. Ed. 48 (2009) 2690–2694]. The Raman spectra also contain information in the wavenumber range ∼90–400 cm−1, which was not accessible by FT‐IR spectroscopy in the previous work. While the α‐polymorph shows Raman and IR bands at similar positions over the whole accessible range, the rule of mutual exclusion is obeyed for the β‐polymorph. This suggests that there is a center of inversion in the basic building block of β‐H2CO3 whereas there is none in α‐H2CO3. Thus, as the basic motif in the crystal structure we suggest the cyclic carbonic acid dimer containing a center of inversion in case of β‐H2CO3 and a catemer chain or a sheet‐like structure based on carbonic acid dimers not containing a center of inversion in case of α‐H2CO3. This hypothesis is strengthened when comparing Raman active lattice modes at < 400 cm−1 with the calculated Raman spectra for different dimers. In particular, the intense band at 192 cm−1 in β‐H2CO3 can be explained by the inter‐dimer stretching mode of the centrosymmetric RC(OHO)2 CR entity with ROH. The same entity can be found in gas‐phase formic acid (RH) and in β‐oxalic acid (RCOOH) and produces an intense Raman active band at a very similar wavenumber. The absence of this band in α‐H2CO3 confirms that the difference to β‐H2CO3 is found in the local coordination environment and/or monomer conformation rather than on the long range. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The fine structure of the fundamental vibrational bands and some combination tones of fullerite C60 in its IR absorption and reflection spectra, as well as in Raman spectra, has been studied. This structure is due to the overlapping components of Davydov and isotopic splittings and the removal of vibrational degeneracy with symmetry lowering. It is shown that for IR F u (i) bands (i = 1–4) and low-frequency H g (1) and A g (1) bands in the Raman spectrum the splittings at room temperature exceed those for the low-temperature phase. The enhancement of intermolecular interaction at elevated temperatures is explained by the nonequilibrium vibrational excitation of the medium as a result of nonlinear interaction of vibrational modes and by the change in the electronic states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号