首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to provide experimental procedures for the identification of anthocyanin‐based dyes used in antiquity. In particular, we assessed the possibility to identify anthocyanins, both in plant extracts and in dyed textiles, by means of surface‐enhanced Raman spectroscopy (SERS), a very chemically specific technique that is moreover sensitive to the changes in structures of molecules, phenomena that occur extensively in the chemistry of anthocyanins. The choice of the plant sources (bilberry, elderberry, sumac, purple corn and hollyhock) was based on their attested use in history as dyeing matters. Suitable extraction and pre‐treatment procedures were optimized both for plant sources (berries, cob glumes and flowers) and textiles dyed with such sources in the laboratory, followed by SERS analyses at different pH values. Finally, special attention was paid to the well‐known instability of anthocyanins: dyed wool samples were exposed to artificial aging in order to verify the possibility to identify such molecules also in faded textiles. The achievement of reliable surface‐enhanced Raman spectra from these samples encourages us to suggest the protocol for the analysis of historical objects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Surface‐enhanced Raman spectroscopy (SERS) was used for the identification of natural organic dyes belonging to indigoid and anthraquinone classes in archeological samples, and good agreement with the corresponding reference commercial materials was found. Special attention was paid to the well‐known problem of anomalous bands that arise sometimes in the SERS spectra on colloids: as suggested in the literature, this problem could be reduced by the use of poly‐L ‐lysine and ascorbic acid as aggregating agents, but we observed that also the addition first of the analyte and subsequently of suitable electrolytes to the colloid in an inverted order compared to the most widely used method can be of help in limiting the intensity of such spurious bands. This procedure allowed us to obtain, for the first time, the SERS spectra of both modern and ancient Tyrian purple and to solve a specific problem observed in the analysis of archeological wool samples dyed with madder lake, i.e. the competition in the SERS response between the dye and other compounds possibly deriving from the degradation of the peptide chain during the hydrolysis treatment during the extraction of the dye from the wool fiber. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In the present study, an application of a silver colloid substrate in order to obtain Fourier‐transform surface‐enhanced Raman (FT‐SER) spectra of natural historical dyes is presented. In detail, we collected a spectral database from solutions of pure dyes and then we carried out extractionless both hydrolysis and non‐hydrolysis FT‐SERS analyses on wool fibers previously dyed in our laboratory and on ancient textiles. The term ‘extractionless’ refers to a method of SERS analysis applied directly on the fiber, thus avoiding the extraction of dyes from textile samples. The combination of a low‐energy source of radiation, as in the FT‐Raman technique, with SER spectroscopy can bring the important advantage of reducing the fluorescence typical of ancient samples and organic dyes. In some historical textile samples, for which SER spectra by use of visible excitation could not be obtained, the FT‐SER spectrum of an iron‐gall dye was recorded without hydrolysis, while, with an HF hydrolysis pre‐treatment on ancient fibers, madder, lac dye and brazilwood were clearly recognized. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The identification of organic colorants in works of art (such as dyes on textiles or organic pigments) by Raman spectroscopy is generally limited by the presence of a strong fluorescence background. In this paper, the effectiveness of minimizing fluorescence in the analysis of Cape Jasmine (Gardenia augusta L.) by dispersive Raman spectroscopy at three different excitation wavelengths (633, 785 and 1064 nm) and by surface‐enhanced Raman spectroscopy (SERS) with and without acid hydrolysis is evaluated and compared. It is shown that these vibrational techniques offer an alternative analytical approach, when, as is particularly the case of Cape Jasmine, sample preparation procedures that are routinely applied for natural organic dyes and pigments cause alterations that lead to low sensitivity in the more classical high‐performance liquid chromatography‐photodiode array (HPLC‐PDA) analytical protocols. Samples of the yellow dye G. augusta L. in the following forms were analyzed: dyed on alum mordanted wool, dyed on nonmordanted and alum mordanted silk, pigment precipitated on hydrated aluminum oxide, extract mixed with a protein binder and painted on glass, and as a water‐based glaze applied on a mock‐up of a typical Chinese wall‐painting. Raman bands at 1537, 1209 and 1165 cm−1 are identified as discriminating markers for the carotenoid colorant components crocetin and crocin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
FT‐Raman and surface‐enhanced Raman scattering (SERS) spectroscopy were applied to the study of lac dye, a highly fluorescent anthraquinone red dye. The SERS spectra were obtained at different pH values, on Ag nanoparticles prepared by chemical reduction with citrate and hydroxylamine, and at several excitation wavelengths, in order to find the best experimental conditions for the detection of the lac dye. The lower detection limit was achieved using nanoparticles prepared by reduction with hydroxylamine, excitation at 514.5 nm, and slightly acidic pH conditions, thus exploiting a combination of factors including lower electrostatic repulsion between dye and nanoparticles and resonance Raman enhancement. A comparison between the adsorption of laccaic acid (LA) and carminic acid (CA), another anthraquinone red dye, was also done, based on the SERS spectra of both dyes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The Raman and surface‐enhanced Raman spectra (SERS) of flavone and three of its hydroxy derivatives, 3‐hydroxyflavone (3‐HF) and 5‐hydroxyflavone (5‐HF) and quercetin (3,5,7,3′,4′ pentahydroxyflavone) have been obtained. The normal Raman (NR) spectra were taken in the powder form. The SERS spectra were obtained both on Ag colloids and Ag electrode substrates. Assignments of the spectrally observed normal modes were aided by density functional theory (DFT) calculations using the B3LYP functional and the 6‐31 + G* basis, a split valence polarized basis set with diffuse functions. Excellent fits were obtained for the observed spectra with little or no scaling. The most intense lines of the NR spectra are those in the CO stretching region (near 1600 cm−1). These lines are often weakened by proximity to the surface, while other lines at lower wavenumbers, due to in‐plane ring stretches, tend to be strongly enhanced. The SERS spectrum of flavone is weak both on the colloid and on the electrode, indicating weak attachment to the surface. In contrast, the SERS spectra of the hydroxy derivatives of flavone are intense, indicating the assistance of OH groups in attachment to the surface. The spectra of the various species are compared, and a case study of application to detection of a textile dye (Persian berries), which contains quercetin, is presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Quaternary protoberberine alkaloids are a class of natural dyes characterized by bright colors ranging from yellow to orange. As they present a strong fluorescence emission, their analysis by Raman spectroscopy is limited to specific techniques such as Fourier transform (FT)‐Raman and spectral shift Raman techniques such as shifted subtracted Raman difference spectroscopy (SSRDS) and shifted excitation Raman difference spectroscopy (SERDS). In a previous article, we successfully used surface‐enhanced Raman scattering (SERS) in the analysis of the alkaloid dye berberine in an ancient textile. The examination of the Raman and SERS spectra of berberine in combination with density functional theory (DFT) calculations indicated a flat adsorption geometry of the molecule on the Ag surface. In this article we extend that work to the study of related protoberberine alkaloids, palmatine, jatrorrhizine, and coptisine. The same adsorption geometry as in berberine was deduced. We found that the four alkaloids, although minimally different in their chemical structures, could be differentiated by the position of marker bands. Those bands are the most enhanced ones in the SERS spectra, which appear in the 700–800 cm−1 region. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
High‐performance liquid chromatography (HPLC) is still, today, the technique of choice for the analysis of natural dyes in artistic objects and historical textiles, particularly in association with photodiode array (PDA) detection. In the last two decades, surface‐enhanced Raman spectroscopy (SERS) gained also increasing importance for these investigations thanks to its sensitivity and limited requirements in terms of sample quantity. In favor of SERS, its high specificity in molecular recognition typical of vibrational spectroscopy should be mentioned, whereas this non‐separative technique is obviously disadvantaged in the analyses of mixed chromophores, as is often the case of many natural dyes and also of tints obtained by the combined use of different colorants. An optimized experimental setup combining the two techniques, HPLC‐PDA and SERS, is proposed in the present work, allowing online SERS detection of different dyeing compounds eluted from the HPLC column. Examples are presented concerning some of the colorants most widely used in history, such as morin and luteolin for yellow dyes, alizarin, purpurin, laccaic, kermesic, and carminic acids for red ones, and indigotin for blue tints. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Surface‐enhanced Raman spectroscopy (SERS) has found increasing acceptance in art conservation and forensic science for its great potential in detecting trace amounts of material. However, SERS is not a separation technique, and, therefore, it is not always suitable for distinguishing different components in a mixture. Coupling of thin layer chromatography (TLC) and SERS has been investigated in this article as a tool for the separation and identification of four alkaloids, namely harmalol, harmaline, harmane and harmine, from the seed extract of Syrian rue (Peganum harmala). The alkaloids contained in this plant were historically used as a dye and for medicinal purposes and have recently drawn attention due to their antitumor activity. The use of TLC over high‐performance liquid chromatography (HPLC) is a convenient way to reduce the amount of material, equipment and time needed for the analysis, and coupling of TLC with SERS provides vibrational information on each compound in the mixture. HPLC analyses with diode array detection were also carried out as a test of our technique, to ascertain the composition of Syrian rue extract and validate the results obtained from TLC‐SERS investigations. In addition, Syrian rue extract and its commercial alkaloid components were characterized by SERS and normal Raman spectroscopy here for the first time, in order to provide valuable reference data to be used for identification purposes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In this work Raman spectroscopic techniques have been utilized to characterize the vibrational spectral features of orchil dyed wool samples. Specifically, it is noted by surface enhanced Raman spectroscopy that wool dyed purple with two historically used orchil species (Roccella tinctoria and Lasallia pustulata) show spectral differences possibly owing to their specific dye‐precursor constituents. The additional natural dyestuff woad (Isatis tinctoria L.) overdyeing the R. tinctoria orchil dyed wool is a further challenge when distinguishing the mixed dye components given by the co‐adsorption of the dyestuffs as permitted by the selection rules of surface enhanced Raman spectroscopy. Furthermore, the effects of dilution of the L. pustulata species in its spectral detection have been assessed along with the evaluation of subsequent lichen extract boiling before dyeing which resulted in the detection of a degraded form of the orchil dye. Proof of concept included the surface enhanced Raman spectroscopy (SERS) investigation of a purple dyed tapestry (XVI century) which permitted an aged orchil dye to be determined. This contribution utilizes SERS as a fast, reproducible and specific method for both orchil dye detection and alteration induced by degradation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Surface‐enhanced Raman scattering (SERS) measurements were carried out on stilbazolium merocyanine dye in methanol and pyridine solvents. Both solutions were measured in a series of concentrations covering a range of 5 × 10−5 M to 5 × 10−8 M . In these measurements, Ag and Au colloids were used, and the results have shown that Ag colloids yield better enhancement in the Raman spectra of this dye. Moreover, the effect of adding NaCl solution to the SERS samples was also studied. All measurements were carried out using the state‐of‐the‐art ChiralRaman instrument, which utilizes a 532 nm laser source. We report here on the success of using SERS to obtain Raman spectra of merocyanine dye at very low concentrations in an attempt to find a new approach that can be used for further investigations of the dye. The SERS spectra are reported here, and the results from different solutions, colloids, concentrations and pH values are compared. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Madder has been used as a textile dye and pigment in works of art since antiquity. Madder dyes from different botanical species are characterized by different series of anthraquinone derivatives. The occurrence of one or more of these compounds in various relative amounts may provide a useful indication of the plant species used to obtain the dye. In this work, surface‐enhanced Raman spectroscopy (SERS) was applied to the analysis of textile fibers dyed with madder from two different botanical species, Oldenlandia umbellata L. and Rubia tinctorum L. The resulting SERS spectra were interpreted in light of the actual composition of the madder dyes as determined by high‐performance liquid chromatography. Interestingly, the SERS spectra were found to exhibit very distinctive spectral features depending on the different anthraquinone derivatives present in the dyes. In particular, the SERS spectrum of O. umbellata L. was found to match the spectrum of alizarin, while the SERS spectrum of R. tinctorum L. was surprisingly dominated by signals due to the less studied anthraquinone compound pseudopurpurin. With this study, we demonstrate that SERS spectra may offer valuable information regarding the major coloring constituents present in different madder species. Moreover, our work shows that not only can SERS be used successfully to differentiate among closely related anthraquinone derivatives, but also that this technique is particularly suitable for the detection of pseudopurpurin, leading to the identification of this compound in a number of works of art. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Luteolin and apigenin flavonoid have been detected in silk and wool fibres dyed with weld (Reseda luteola L.) through surface‐enhanced Raman scattering (SERS) measurements carried out ‘on the fibre’. For such purpose, Ag nanoparticles were produced and immobilised in situ via the laser photoreduction of a silver nitrate water solution in contact with the fibre. Control SERS spectra of pure luteolin and apigenin, as well as of mixtures of them, on analogous Ag nanoparticles were also obtained. In this work flavonoids with a similar molecular structure were identified on dyed fibres for the first time without previously hydrolysing the mordant–dye complex. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
There is an increasing interest in developing surface enhancement Raman spectroscopy methods for intracellular biomolecule and for in vitro protein detection that involve dye or protein–dye conjugates. In this work, we have demonstrated that protein adsorption on silver nanoparticle (AgNP) can significantly attenuate the surface‐enhanced Raman spectroscopy (SERS) signal of dye molecules in both protein/dye mixtures and protein/dye conjugates. SERS spectra of 12 protein/dye mixtures were acquired using 4 proteins [bovine serum albumin (BSA), lysozyme, trypsin, and concanavalin A] and three dyes [Rhodamine 6G, adenine, and fluorescein isothiocyanate (FITC)]. Besides the protein/dye mixtures, spectra were also obtained for the free dyes and four FITC‐conjugated proteins. While no SERS signal was observed in protein/FITC mixtures or conjugates, a significantly reduced SERS intensity (up to 3 orders of magnitude) was observed for both R6G and adenine in their respective protein mixtures. Quantitative estimation of the number of dye molecules absorbed onto AgNP implied that the degree of R6G SERS signal reduction in the R6G/BSA sample is 2 to 3 orders of magnitude higher than what could be accounted for by the difference in the amount of the absorbed dyes. This finding has significant implications for both intracellular SERS analyses and in vitro protein detection using SERS tagging strategies that rely on Raman dyes as reporter molecules. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Surface‐enhanced Raman scattering (SERS) spectra of azo dyes (methyl orange and p‐methyl red) adsorbed on ZnO nanoparticles were observed. Hydrothermally synthesized ZnO nanoparticles were characterized by powder X‐ray diffraction and X‐ray photoelectron spectroscopy. The ZnO nanoparticle size, monitored with X‐ray diffraction, was tuned by calcination to optimize SERS intensities. The observed SERS effect of azo dyes adsorbed on ZnO can be ascribed to charge‐transfer resonance effect. Time‐dependent density functional theory was used to calculate the optical spectra and interpret the chemical enhancement observed in the experiment. The SERS enhancement factors for methyl red on ZnO were boosted by nearly four times and twice with O2 plasma and H2 plasma, respectively. However, plasma treatment showed no effect on the enhancement factors of methyl orange on ZnO. We conclude that plasma‐induced defect formation and band gap shift in ZnO and the coupling of energy levels between ZnO and azo dye molecules are responsible for the observed enhancement of SERS intensities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
以银氨溶液和葡萄糖制备的银镜为吸附基底,获得了酸性金黄G偶氮染料在银镜上的表面增强拉曼光谱,并对其拉曼峰的归属及吸附机理进行了探讨。酸性金黄G靠静电引力和范德华力以带孤对电子的N原子垂直吸附在银镜表面,SERS强度随染料浓度的降低而降低,检出限为10-10mol/L。  相似文献   

17.
用近红外傅里叶拉曼光谱研究了苏丹红Ⅲ分子在覆银纳米颗粒的抛光铝片表面上的吸附行为,得到了一系列高质量的增强拉曼散射(SERS)谱图。对苏丹红Ⅲ分子在银胶溶液、覆银滤纸、覆银粗糙铝片上的SERS谱进行比较,结果表明苏丹红Ⅲ分子在各基底上与银纳米颗粒表现出不同的吸附行为。在银胶溶液中,苏丹红Ⅲ分子主要是通过N=N双键吸附在银纳米颗粒上的;在沉积了银纳米颗粒的滤纸表面,同样地,主要是由N=N双键吸附;而在沉积了银纳米颗粒的抛光铝片表面,不仅N=N双键参与了吸附,苏丹红Ⅲ分子中的羟基与银颗粒有相互作用,并且铝片上的氧化铝颗粒也可能吸附了苏丹红Ⅲ分子。  相似文献   

18.
应用SERS滤纸基底检测饮料中违禁色素的研究   总被引:1,自引:0,他引:1  
利用液/液界面自组装技术制备得到灵敏度高、均匀性好、价格低廉的表面增强拉曼光谱(SERS)滤纸基底,并使用该基底检测了饮料中可能掺杂的罗丹明B、日落黄和柯衣定等三种色素。首先分析了罗丹明B、日落黄和柯衣定的分子结构并对其进行了拉曼特征峰峰位归属;然后检测了罗丹明B、日落黄和柯衣定不同浓度水溶液的SERS光谱;最后在无任何预处理条件下,检测了饮料中的罗丹明B、日落黄和柯衣定含量。在一定浓度范围内,饮料中三种色素的浓度与其SERS特征峰强度分别满足一定的函数关系,其中罗丹明B和日落黄的浓度与拉曼特征峰强度之间呈非线性关系,而柯衣定的浓度与拉曼特征峰强度之间呈线性关系。评估了本方法检测饮料中的罗丹明B、日落黄、柯衣定的信号重复性及检测回收率,结果表明SERS方法可用来对饮料中罗丹明B、日落黄、柯衣定的浓度进行半定量分析。为饮料中添加色素的现场实时检测提供了一种简便快速高效的检测方式,可用于饮料的质量控制及市场监控。  相似文献   

19.
The highly fluorescent natural dye berberine can be easily identified in microscopic textile samples by surface‐enhanced Raman spectroscopy employing citrate‐reduced Ag colloid. The ordinary Raman (OR) and SERS spectra of berberine are presented and discussed in the light of a DFT calculation. Using FT‐Raman and FT‐SERS we could reliably compare relative intensity shifts and investigate the adsorption geometry of berberine on Ag nanoparticles. The significant enhancement in the FT‐SERS spectrum of the out‐of‐plane ring system bending deformation mode at 729 cm−1 relative to a group of in‐plane vibrations at around 1500 cm−1 was interpreted as evidence of a ‘flat‐on’ adsorption geometry. SERS was successfully used to identify berberine in silk fiber samples coated with colloidal Ag following a pretreatment with HCl vapor. The SERS method allowed us to detect berberine in a microscopic sample of a single silk fiber from a severely degraded and soiled 17th Century Chinese textile fragment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This study was designed to optimize the extraction rate of total polyphenols and ellagic acid from pomegranate flowers. Single factors were investigated for liquid-to-material ratio (5–25), ethanol concentration (20%–60%), sonication time (5–60 min), and sonication power (150–500 W). The level range of the Box-Bokhen design was determined with respect to the single-factor results. The components of each index were normalized using the entropy weighting method for obtaining the comprehensive evaluation value. Under the actual conditions, the final optimization results were 17 for liquid-to-material ratio, 43% for ethanol concentration, 10 min for ultrasonic time, and 300 W for ultrasonic power. The extracts obtained under optimal conditions were tested for the inhibition of Streptococcus mutans and its biofilm, and results showed that pomegranate flowers exerted some inhibitory effects on the bacterium. Phosphomolybdenum and FRAP assays were used, and DPPH, ABTS, and O2− radical scavenging tests were conducted, indicating that pomegranate flower extracts have good antioxidant capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号