首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stresses are determined for a finite cylindrical crack that is propagating with a constant velocity in a nonhomogeneous cylindrical elastic layer, sandwiched between an infinite elastic medium and a circular elastic cylinder made from another material. The Galilean transformation is employed to express the wave equations in terms of coordinates that are attached to the moving crack. An internal gas pressure is then applied to the crack surfaces. The solution is derived by dividing the nonhomogeneous interfacial layer into several homogeneous cylindrical layers with different material properties. The boundary conditions are reduced to two pairs of dual integral equations. These equations are solved by expanding the differences in the crack surface displacements into a series of functions that are equal to zero outside the crack. The Schmidt method is then used to solve for the unknown coefficients in the series. Numerical calculations for the stress intensity factors were performed for speeds and composite material combinations.  相似文献   

2.
The antiplane shear deformation problem of two edge-bonded dissimilar isotropic wedges is considered. In the case when the sum of the two apex angles is equal to 2π, the problem reduces to that of two edge-bonded dissimilar materials with an interfacial crack subjected to concentrated antiplane shear tractions on the crack faces. An explicit expression is extracted for the stress intensity factor at the crack tip. In the special cases of different combinations of the apex angles, the obtained expression for the stress intensity factor may be simplified and relations of a simpler form are given for the stress intensity factor. It is shown that the stress intensity factor is dependent on the material properties as well as the geometry and loading. However, in special cases of equal apex angles as well as the case of similar materials the dependency of the stress intensity factor on the material properties disappears.  相似文献   

3.
This paper investigates the edge crack problem for a coating/substrate system with a functionally graded interfacial zone under the condition of antiplane deformation. With the interfacial zone being modeled by a nonhomogeneous interlayer having the continuously varying shear modulus between the dissimilar, homogeneous phases of the coated medium, the coating is assumed to contain an edge crack at an arbitrary angle to the interfacial zone. The Fourier integral transform method is used in conjunction with the coordinate transformations of basic field variables. Formulation of the proposed crack problem is then reduced to solving a singular integral equation with a generalized Cauchy kernel. The mode III stress intensity factors are defined and evaluated in terms of the solution to the integral equation. In the numerical results, the values of the stress intensity factors are plotted, illustrating the effects of the crack orientation angle for various material and geometric combinations of the coating/substrate system with the graded interfacial zone.  相似文献   

4.
This paper investigates transient stresses around a cylindrical crack in an infinite elastic medium subject to impact loads. Incoming stress waves resulting from the impact load impinge on the crack in a direction perpendicular to the crack axis. In the Laplace transform domain, by means of the Fourier transform technique, the mixed boundary value equations with respect to stresses and displacements were reduced to two sets of dual integral equations. To solve the equations, the differences in the crack surface displacements were expanded in a series of functions that are zero outside the crack. The boundary conditions for the crack were satisfied by means of the Schmidt method. Stress intensity factors were defined in the Laplace transform domain and were numerically inverted to physical space. Numerical calculations were carried out for the dynamic stress intensity factors corresponding to some typical shapes assumed for the cylindrical crack.  相似文献   

5.
This paper considers an interfacial crack with a cohesive zone ahead of the crack tip in a linearly elastic isotropic bi-material and derives the mixed-mode asymptotic stress and displacement fields around the crack and cohesive zone under plane deformation conditions (plane stress or plane strain). The field solution is obtained using elliptic coordinates and complex functions and can be represented in terms of a complete set of complex eigenfunction terms. The imaginary portion of the eigenvalues is characterized by a bi-material mismatch parameter ε = arctanh(β)/π, where β is a Dundurs parameter, and the resulting fields do not contain stress singularity. The behaviors of “Mode I” type and “Mode II” type fields based on dominant eigenfunction terms are discussed in detail. For completeness, the counterpart for the Mode III solution is included in an appendix.  相似文献   

6.
The asymptotic problem of a kinked interfacial crack in dissimilar anisotropic materials under antiplane deformation is investigated. The linear transformation method for the problem of the anisotropic bimaterial with a straight interface is proposed. The stress intensity factor for the kinked interfacial crack in the anisotropic composite is obtained from the solution of the transformed problem of the kinked interfacial crack in the isotropic bimaterial based on the linear transformation method. The effects of the material parameters as well as the kink angle on the stress intensity factor are discussed from numerical results of the stress intensity factor. The finite element analysis is carried out to verify the stress intensity factor obtained by using the linear transformation. The influence of the material orientations on the stress intensity factor is investigated for the kinked crack in the bimaterial consisting of dissimilar inclined orthotropic materials.  相似文献   

7.
The asymptotic problem of a semi-infinite interface crack between dissimilar electrostrictive materials that are subjected to electric loading is numerically analyzed by using the finite element method. Numerical results of electric displacement fields are obtained on the basis of the mathematical equivalence of the mode III problem and an electrostatic problem. The shape and the size of saturation zones are explored as a function of the ratio of the saturated electric displacements of dissimilar electrostrictive materials. In contrast with conventional wisdom, the ratio of the permittivities is shown to exert a negligibly small influence on electric displacement fields. For various combinations of the material properties of dissimilar electrostrictive materials, stress fields and stress intensity factors are systemically calculated by using the numerical results of electric displacement fields. The effects of the electric, elastic, and electrostrictive properties on stress intensity factors are demonstrated.  相似文献   

8.
A composed circular cylinder, formed by a core circular cylinder, containing a crackand enclosed by a layered hollow circular cylinder, is investigated in regard to the evaluation ofstress intensity factors. Analytic solutions to the problem are provided, with which the upper andlower bounds of stress intensity factors in a cracked circular cylinder, the stress distribution in alayered hollow circular cylinder, and the stress intensity factors for a crack in the composedcircular cylinder can precisely be determined. Numerical materials, demonstrating the discretevalues of the stress intensity factors, as well as the general pattern according to which the stressintensity factors vary with the material and geometric constants, are presented. The solutions aredeveloped based on a simplified and modified solution to the Hilbert problem, and the matrixpresentation and manipulation of functions and variables, used in the circuit theory.  相似文献   

9.
Damage-tolerant design of composite components in aerospace structures requires computationally effective stress and failure analysis methods. This study introduces an analytical/numerical method to determine the stress field and the stress intensity factors in a composite longeron web with an arbitrarily oriented straight crack near a hole. Typical of webs in wing longerons with massive belts, the tapered web is loaded in bending and shear. The solution method makes use of the complex potentials in conjunction with the boundary collocation technique. The present results are in close agreement with those obtained by finite element.  相似文献   

10.
Using the hypersingular integral equation method based on body force method, a planar crack meeting the interface in a three-dimensional dissimilar materials is analyzed. The singularity of the singular stress field around the crack front terminating at the interface is analyzed by the main-part analytical method of hypersingular integral equations. Then, the numerical method of the hypersingular integral equation for a rectangular crack subjected to normal load is proposed by the body force method, which the crack opening dislocation is approximated by the product of basic density functions and polynomials. Numerical solutions of the stress intensity factors of some examples are given.  相似文献   

11.
仲红俊  雷钧  张传增 《计算力学学报》2013,30(3):418-421,436
对常见横观各向同性压电材料(TIP)中界面裂纹的裂纹面与压电材料的极化方向成任意夹角的一般情况进行了研究,通过推导得到了计算裂尖强度因子的显式外推公式,同时给出了裂纹面与极化方向垂直的典型情况下的外推公式.这些显式计算公式为常见数值方法如有限元法及边界元法在压电材料断裂力学中的应用提供了便利.  相似文献   

12.
13.
By means of an asymptotic expansion method of a regular series, an exact higher-order analysis has been carried out for the near-tip fields of an interfacial crack between two different elastic-plastic materials. The condition of plane strain is invoked. Two group of solutions have been obtained for the crack surface conditions: (1) traction free and (2) frictionless contact, respectively. It is found that along the interface ahead of crack tip the stress fields are co-order continuous while the displacement fields are cross-order continuous. The zone of dominance of the asymptotic solutions has been estimated. The project supported by the National Natural Science Foundation of China  相似文献   

14.
For arbitrary anisotropy in the linear manifold of singular solutions generating square-root singularities of the crack tip stress, a special basis is introduced that possesses the same properties as in the isotropic case and provides simple integral representations for the attributes of the energy fracture criterion, in particular, the conditions of crack deviation from a straight path. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 3, pp. 98–107, May–June, 2005.  相似文献   

15.
The transient thermal stress crack problem for two bonded dissimilar materials subjected to a convective cooling on the surface containing an edge crack perpendicular to the interface is considered. The problem is solved using the principle of superposition and the uncoupled quasi-static thermoelasticity. The crack problem is formulated by applying the transient thermal stresses obtained from the uncracked medium with opposite sign on the crack surfaces to be the only external loads. Fourier integral transform is used to solve the perturbation problem resulting in a singular integral equation of Cauchy type in which the derivative of the crack surface displacement is the unknown function. The numerical results of the stress intensity factors are calculated for both the edge crack and the crack terminating at the interface using two different composite materials and illustrated as a function of time, crack length, coefficient of heat transfer, and the thickness ratio.  相似文献   

16.
Numerical solutions of singular integral equations are discussed in the analysis of a planar rectangular interfacial crack in three-dimensional bimaterials subjected to tension. The problem is formulated as a system of singular integral equations on the basis of the body force method. In the numerical analysis, unknown body force densities are approximated by the products of the fundamental density functions and power series, where the fundamental density functions are chosen to express singular behavior along the crack front of the interface crack exactly. The calculation shows that the present method gives smooth variations of stress intensity factors along the crack front for various aspect ratios. The present method gives rapidly converging numerical results and highly satisfied boundary conditions throughout the crack boundary. The stress intensity factors are given with varying the material combination and aspect ratio of the crack. It is found that the stress intensity factors KI and KII are determined by the bimaterial constant ε alone, independent of elastic modulus ratio and Poisson’s ratio.  相似文献   

17.
Although a lot of interface crack problems were previously treated, few solutions are available under arbitrary crack lengths and material combinations. In this paper the stress intensity factors of an edge interface crack in a bonded strip are considered under tension with varying the crack length and material combinations systematically. Then, the limiting solutions are provided for an edge interface crack in a bonded semi-infinite plate under arbitrary material combinations. In order to calculate the stress intensity factors accurately, exact solutions in an infinite bonded plate are also considered to produce proportional singular stress fields in the analysis of FEM by superposing specific tensile and shear stresses at infinity. The details of this new numerical solution are described with clarifying the effect of the element size on the stress intensity factor. It is found that for the edge interface crack the normalized stress intensity factors are not always finite depending upon Dunders’ parameters. This behavior can be explained from the condition of the singular stress at the end of bonded strip. Convenient formulas are also given by fitting the computed results.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号