首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An elastic layer bonded between two rigid plates has higher compression stiffness than the elastic layer without bonding. While the finite element method can be applied to calculate the stiffness, the compression stiffness of bonded rectangular layers derived through a theoretical approach in this paper provides a convenient way for parametric study. Based on two kinematics assumptions, the governing equation for the mean pressure is derived from the equilibrium equations. Using the approximate shear boundary condition, the mean pressure is solved and the compression stiffness of the bonded rectangular layer is then established in an explicit single-series form. Through the solved pressure, the horizontal displacements are derived from the corresponding equilibrium equations, from which the shear stress on the bonding surface can be found. It is found that the effect of the rectangular aspect on the compression stiffness is significant only when Poisson’s ratio is near 0.5. For the smaller Poisson’s ratio, the compression stiffness of the rectangular layer can be approximated by the formula for the infinite-strip layer of the same shape factor.  相似文献   

2.
An elastic layer of circular cross-section which is bonded between rigid plates and subjected to pure bending moment is analyzed through a theoretical approach. Based on two kinematic assumptions, the governing equations for the two horizontal displacement functions are established from the equilibrium equations. The horizontal displacements are then solved by satisfying the stress boundary conditions in the elastic layer. Through these solved displacements, the vertical stress in the elastic layer, the shear stress on the bonding surfaces, and the tilting stiffness of the bonded layer are derived in closed-forms and are also compared with the results of finite element analysis.  相似文献   

3.
Elastic layers bonded to rigid surfaces have widely been used in many engineering applications. It is commonly accepted that while the bonded surfaces slightly influence the shear behavior of the layer, they can cause drastic changes on its compressive and bending behavior. Most of the earlier studies on this subject have been based on assumed displacement fields with assumed stress distributions, which usually lead to “average” solutions. These assumptions have somehow hindered the comprehensive study of stress/displacement distributions over the entire layer. In addition, the effects of geometric and material properties on the layer behavior could not be investigated thoroughly. In this study, a new formulation based on a modified Galerkin method developed by Mengi [Mengi, Y., 1980. A new approach for developing dynamic theories for structural elements. Part 1: Application to thermoelastic plates. International Journal of Solids and Structures 16, 1155–1168] is presented for the analysis of bonded elastic layers under their three basic deformation modes; namely, uniform compression, pure bending and apparent shear. For each mode, reduced governing equations are derived for a layer of arbitrary shape. The applications of the formulation are then exemplified by solving the governing equations for an infinite-strip-shaped layer. Closed form expressions are obtained for displacement/stress distributions and effective compression, bending and apparent shear moduli. The effects of shape factor and Poisson’s ratio on the layer behavior are also investigated.  相似文献   

4.
M. E. Erguven 《Meccanica》1991,26(2-3):117-123
The problem considered in this paper describes the torsion of a homogeneous isotropic elastic layer (0zd 1) of finite thickness d 1, perfectly bonded to another elastic layer (-d 2z0) of finite thickness d 2. The problem is reduced to the solution of a Fredholm integral equation of the second kind. The solutions are given for some particular cases.
Sommario In questo lavoro si considera il problema della torsione di uno strato elastico omogeneo ed isotropo (0zd 1) di spessore finito d 1, perfettamente incollato ad un altro strato elastico (-d 2z0) di spessore finito d 2. II problema é ricondotto alla soluzione di una equazione integrale di Freedholm del secondo ordine. Le soluzioni sono ottenute per alcuni casi particolari.
  相似文献   

5.
Theoretical force-time relationships were derived for squeezing flow of a Newtonian liquid between lubricated rigid and elastic plates. It is shown how the elastic number, representing the ratio between the elastic plate's rigidity and the specimen's viscosity, affects the force-time curve and under what circumstances the fluid specimen's thickness becomes a significant factor. Potential implications of the analysis in oral sensory evaluations of viscous foods are also considered.  相似文献   

6.
Bonding with reinforcements can increase the stiffness of elastic layers in the normal direction. The flexibility effect of the reinforcement on the bonded elastic layers of a circular cross-section subjected to pure bending moment is analyzed through a theoretical approach. Based on two kinematics assumptions in the elastic layers, the closed-form solutions of the horizontal displacements in the elastic layers and the reinforcements are solved using the governing equations established by stress equilibrium in the elastic layers and the reinforcements. Through these solved displacements, the tilting stiffness of the bonded elastic layer, the shear stress on the bonding surfaces, and the internal forces of the reinforcements are derived in closed forms.  相似文献   

7.
The two-dimensional problem of a rigid rounded-off angle triangular inclusion partially bonded in an infinite elastic plate is studied. The unbonded part of the inclusion boundary forms an interfacial crack. Based on the complex variable method for curvilinear boundaries, the problem is reduced to a non-homogeneous Hilbert problem and the stress and displacement fields in the plate are obtained in closed form. Special attention is paid in the investigation of the stress field in the vicinity of the crack tip. It is found that the stresses present an oscillatory singularity and the general equations for the local stresses are derived. The singular stress field is coupled with the maximum circumferential stress and the minimum strain energy density criteria to study the fracture characteristics of the composite plate. Results are given for the complex stress intensity factors, the local stresses, the crack extension angles and the critical applied loads for unstable crack growth from its more vulnerable tip or two types of interfacial cracks along the inclusion boundary.  相似文献   

8.
The static solution to the problem of a layer bonded to an elastic half-space, where the layer is driven by the torsional rotation of a bonded rigid circular disk, is considered here. An iterative solution, perturbing on that given for the elastic half-space, is obtained as a convergent power series, provided the ratio of the stratum depth to the radius of the disk is large. An equation for the applied static torque at the surface of the rigid disk is also calculated and compared, under limiting cases, with known results.  相似文献   

9.
10.
IntroductionAtpresent,inthetheoryresearchandpracticecomputationforlaminatedplates,oneoftheimportantproblemswhichmanconcernsiscontinualconditionsofdisplacementsandstressbetweenlayers.Thusinthispaper,wegivevariousformsoffunctionalonblendingenergyprinci…  相似文献   

11.
A highly expandable polymeric material have been combined with a stiff skeleton material to form a powerful design of thermal micro-actuators. The bond interfaces with the skeleton laterally restrain deformation of the polymer and consequently direct its volumetric expansion in the transverse direction. A complete lateral constraint at the infinite bond width could maximize the apparent thermal strain of the bonded polymer. However, it is not sure how much strain enhancement can be achieved using a finite bond width. To answer this, we resort to an approximate thermo-elastic model and solve it using the mean-pressure method. This model leads to closed-form solutions to the thermally induced strains and stresses in a bonded polymer layer between rigid interfaces. The closed-form solution shows that the apparent strain of a bonded layer depends on the aspect ratio of the bond width to the layer thickness, besides Poisson’s ratio. Furthermore, it further shows that a bond width five times the thickness of the SU-8 epoxy layer is sufficient to attain 95% of the maximum apparent strain, which is obtained at the infinite width.  相似文献   

12.
In this work, we study the dispersion of elastic waves in piezoelectric infinite plates with ferroelectric inversion layers. The motivation is to analyze the effect of ferroelectric inversion layers on wave dispersion and resonant behavior under impulsive line loads. A semi-analytical finite-element (SAFE) method has been adopted to analyze the problem. Two model problems are considered for analysis. In one, the plate is composed of a layer of 36° rotated y-cut LiNbO3 with a ferroelectric inversion layer. In the other, material is PZT-4 with a ferroelectric inversion layer. Comparison with experimental results, reported in the literature for isotropic materials, shows a very good agreement with theoretical predictions obtained using SAFE method. Furthermore, comparison of the resonance frequencies of the S1 modes, calculated using KLM approximation (f0 = Cd/2h) and SAFE method, are illustrated for each problem. The frequency spectra of the surface displacements show that resonant peaks occur at frequencies where the group velocity vanishes and the phase velocity remains finite, i.e., a minimum in the dispersion curve below the cut-off frequency. The effect of the ratio of the thicknesses of the inversion layer (IL) and the plate on the frequencies and strength of the resonant peaks is examined. It is observed that for PZT-4 with 50% IL to plate thickness ratio the frequency for the second resonant peak is about twice that for the first one. Results are presented showing the dependence of resonant frequencies on the material properties and anisotropy. Materials selection for single-element harmonic ultrasound transducers is a very important factor for optimum design of transducers with multiple thickness-mode resonant frequencies. The theoretical analysis presented in this study should provide a means for optimum ultrasound transducer design for harmonic imaging in medical applications.  相似文献   

13.
A number of hypotheses were formulated using the properties of an asymptotic solution of boundary-value problems of the three-dimensional micropolar (moment asymmetric) theory of elasticity for areas with one geometrical parameter being substantially smaller than the other two (plates and shells). A general theory of bending deformation of micropolar elastic thin plates with independent fields of displacements and rotations is constructed. In the constructed model of a micropolar elastic plate, transverse shear strains are fully taken into account. A problem of determining the stress-strain state in bending deformation of micropolar elastic thin rectangular plates is considered. The numerical analysis reveals that plates made of a micropolar elastic material have high strength and stiffness characteristics.  相似文献   

14.
Solved is the problem of a crack in a functionally graded piezoelectric material (FGPM) bonded to two elastic surface layers. It is assumed that the elastic stiffness, piezoelectric constant, and dielectric permittivity of the FGPM vary continuously along the thickness of the strip. The outside layers are under antiplane mechanical loading and in-plane electric loading. The solution involves solving singular integral equations by application of the Gauss–Jacobi integration formula. Numerical calculations are carried out to obtain the energy density factors. Their variations with the geometric, loading and material parameters are shown graphically.  相似文献   

15.
An improved method based on the first-order shear deformable plate theory is developed to calculate the energy release rate and stress intensity factor for a crack at the interface of a bi-layer structure. By modeling the uncracked region of the structure as two separate Reissner-Mindlin plates bonded perfectly along the interface, this method is able not only to take into account the shear deformation in the cracked region, but also to capture the shear deformation in the uncracked region of the structure. A closed form solution of energy release rate and mode decomposition at the interface crack is obtained for a general loading condition, and it indicates that the energy release rate and stress intensity factor are determined by two independent loading parameters. Compared to the approach based on the classical plate theory, the proposed method provides a more accurate prediction of energy release rate as well as mode decomposition. The computational procedures introduced are relatively straightforward, and the closed form solution can be used to predict crack growth along the layered structures.  相似文献   

16.
In this study, the frictional contact problem for a layer bonded to a homogeneous substrate is considered according to the theory of elasticity. The layer is indented by a rigid cylindrical stamp which is subjected to concentrated normal and tangential forces. The friction between the layer and the stamp is taken into account. The problem is reduced to a singular integral equation of the second kind in which the contact pressure function and the contact area are the unknown by using integral transform technique and the boundary conditions of the problem. The singular integral equation is solved numerically using both the Jacobi polynomials and the Gauss?CJacobi integration formula, considering equilibrium and consistency conditions. Numerical results for the contact pressures, the contact areas, the normal stresses, and the shear stresses are given, for both the frictional and the frictionless contacts.  相似文献   

17.
18.
Summary  This paper is concerned with a semi-infinite interfacial crack between two bonded dissimilar elastic strips with equal thickness. Solutions for the complex stress intensity factor (SIF) and energy release rate (ERR) are obtained in closed form under in-plane deformations. During the procedure, the mixed boundary-value problem is reduced by means of the conformal mapping technique to the standard Riemann–Hilbert problem. In some limiting cases, the present solutions can cover the results found in literature. Received 21 February 2002; accepted for publication 2 July 2002 X.-F Wu's work was supported in part by the Milton E. Mohr Research Fellowship (2001, 2002) of the Engineering College at University of Nebraska-Lincoln.  相似文献   

19.
An analysis is performed for the problem of a finite Griffith crack moving with constant velocity along the interface of a two-layered strip composed of a piezoelectric ceramic and an elastic layers. The combined out-of-plane mechanical and in-plane electrical loads are applied to the strip. Fourier transforms are used to reduce the problem to a pair of dual integral equations, which is then expressed in terms of a Fredholm integral equation of the second kind. The dynamic stress intensity factor(DSIF) is determined, and numerical results show that DSIF depends on the crack length, the ratio of stiffness and thickness, and the magnitude and direction of electrical loads as well as the crack speed. In case that the crack moves along the interface of piezoelectric and elastic half planes, DSIF is independent of the crack speed.  相似文献   

20.
桁架材料的连续介质等效模型的研究已有相当基础,而工程中桁架材料往往以类板结构形式出现,其变形表现出明显的弯曲特征。将类板桁架材料采用弯曲板模型模拟,研究合理的方法确定等效板模型的刚度具有重要意义。本文在基于Kirchhoff假定的小挠度薄板弹性理论框架下,研究了类板桁架材料的等效弯曲薄板模型,提出了确定薄板模型等效刚度的基于Dirichlet位移边界条件的代表体元法,给出了确定各刚度系数所对应的代表体元的边界位移形式。具体计算了几种典型形式桁架板的等效刚度,并采用有限元离散模型和实验技术分析了桁架板在一定的边界约束和荷载作用下的响应,并与等效板模型的分析结果进行了对比。结果表明,在响应分析中,具有等效刚度的薄板模型可准确模拟类板桁架材料;连续介质板等效刚度计算的积分法不能给出准确的桁架板等效刚度,而基于Dirichlet位移边界条件的代表体元法获得的等效板的刚度具有很高的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号