首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nd‐doped ZnO nanoparticles with different concentration were synthesized by sol‐gel method. The structures, magnetic and optical properties of as‐synthesized nanorods were investigated. X‐ray diffraction (XRD) and x‐ray photoelectron spectroscopy (XPS) results demonstrated that Nd ions were incorporated into ZnO lattice; but Zn1‐xNdxO nanoparticles with Nd concentration of x = 0.05 showed Nd2O3 phase, so the saturation concentration of Nd in Zn1‐xNdxO is less than 5 at%. Vibrating sample magnetometer (VSM) measurements indicated that Nd doped ZnO possessed dilute ferromagnetis behaviour at room temperature. Photoluminescence spectroscopy (PL) showed that Nd ions doping induced a red slight shift and decrease in UV emission with increase of Nd concentration.  相似文献   

2.
A new, fast and low cost method to produce Cu‐doped ZnO nanosheets is reported for the first time in this paper. Zinc foil specimens were immersed into CuSO4 aqueous solutions with various concentrations for 3 seconds and then dried at ambient condition. The immersed specimens were characterized with a scanning electron microscope, an X‐ray diffractometer and a transmission electron microscope. The results show that Cu‐doped ZnO nanosheets with a multilayer structure on a cupper layer are formed. Cu‐doped ZnO nanosheets show hexagonal crystalline structure and comprises polycrystalline grains with diameters of 5∼10 nm. A physical modal is suggested to explain the prepared Cu‐doped ZnO nanosheet structure, based on the chemical reactions and a metallurgical cell.  相似文献   

3.
The magnetic and structural properties of manganese‐doped ZnO powder samples prepared by a solid state method are reported. Magnetization measurements indicate ferromagnetic behavior, with hysteresis observed in the M vs. H behavior at 300 K. Coercive fields were <100 Oe at 300 K. Temperature‐dependent magnetization measurements showed evidence for ordering temperatures of >300 K. However, the results show that ferromagnetism originates from the doped matrix rather than any type of magnetic cluster and the ferromagnetism is due to the defects and/or oxygen vacancies confined to the surface of the grains. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The bulk samples of Mn‐doped ZnO were synthesized with the nominal compositions Zn1‐xMnxO (x = 0.02, 0.05, 0.10, 0.15) by the solid‐state reaction and sol‐gel methods. In both the methods the samples were finally sintered at ∼700 °C in air. The X‐ray diffraction (XRD) studies of the samples synthesized by the solid‐state reaction method exhibit the presence of wurtzite (hexagonal) crystal structure similar to the parent compound (ZnO) in all the samples, suggesting that doped Mn ions sit at the regular Zn sites. However, same studies spread over the samples with Mn content ≥5% and synthesized by the sol‐gel method reveal the occurrence of some secondary phase in addition to the majority wurtzite phase. The magnetic measurements by vibrating sample magnetometer (VSM) clearly indicate ferromagnetic interaction at room temperature in all the samples. The Curie temperatures (Tc) and magnetization vary with concentration of Mn ions in the samples. However, the samples synthesized by sol‐gel method were found to have lower Tc values and also lower magnetization as compared to the corresponding samples synthesized by solid‐state reaction method. It could possibly be due to the presence of antiferromagnetic islands and smaller crystallite sizes in the samples prepared by sol‐gel method. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Vanadium (V) doped ZnO thin films (Zn1‐xVx O, where x = 0, 0.05, 0.10) have been grown on sapphire substrates by RF magnetron sputtering to realize room temperature ferromagnetism (RTFM). The grown films have been subjected to X‐ray diffraction (XRD), resonant Raman scattering, photoluminescence (PL) and vibrating sample magnetometer (VSM) measurements to investigate their structural, optical and magnetic properties, respectively. The full width at half maximum of XRD and Raman scattering peaks increases with V ion concentration indicates that the V ions have been substituted on Zn2+ ions in the ZnO matrix. The increase in oxygen vacancies with V concentration is evidenced by PL measurements. Rutherford backscattering spectrometry analysis confirms the presence of the V ions in the films. The room temperature VSM measurements reveal the signature of ferromagnetism in V doped ZnO thin films. It has been observed that the grain boundary defects, i.e., oxygen vacancies play a crucial role in inducing RTFM in V doped ZnO films. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We prepared Co‐doped ZnO films by the electrochemical deposition. X‐ray diffraction (XRD), high resolution transmission microscopy (HRTEM), x‐ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), x‐ray absorption near‐edge structure (XANES), vibrating sample magnetometer (VSM), optical absorption, and photoluminescence (PL) measurements were carried out on the samples. The results showed Co atoms substituted Zn atoms in the ZnO lattice without the formation of the impurity phase. VSM measurements showed the ferromagnetic properties for the Co‐doped ZnO samples. When the Co doping concentration increased, the band gaps were widened and the PL peak positions shifted towards the short wavelength direction. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The effect of film thickness and substrate orientation on ferromagnetism in Mn doped ZnO thin films have been studied. The Mn doped ZnO films of different thickness (15, 35 and 105 nm) have been grown on both Si (100) and Si (111) substrates. The structural, electrical, optical, elemental and magnetic properties of the films have been investigated by X‐ray diffraction (XRD), Hall Effect measurements, photoluminescence (PL), energy dispersive spectroscopy (EDS) and vibrating sample magnetometer (VSM), respectively. It is found that all the properties are strongly influenced by the film thickness and substrate orientation. The XRD analysis confirmed that the formation of high quality monophasic hexagonal wurtzite structure for all the grown films. The room temperature VSM measurements showed that the films of lower thickness have better ferromagnetism than that of the thicker films grown on both the substrates. Among the lower thickness films, the film grown on Si (111) substrate has higher saturation magnetization (291×10‐5 emu cm‐3) due to high density of the defects. The observed ferromagnetism has been well justified by XRD, Hall measurements and PL. The presence of Mn atoms in the film has been confirmed by EDS. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Mg‐doped ZnO (MgxZn1‐xO) nanoparticles with precise stoichiometry are synthesized through polyacrylamide polymer method. Calcination of the polymer precursor at 650 °C gives particles of the homogeneous solid solution of the (MgxZn1‐xO) system in the composition range (x < 0.15). ZnO doping with Mg causes shrinkage of lattice parameter c. The synthesized MgxZn1‐xO nanoparticles are typically with the diameter of 70–85 nm. Blue shift of band gap with the Mg‐content is demonstrated, and photoluminescence (PL) from ZnO has been found to be tunable in a wide range from green to blue through Mg doping. The blue‐related PL therefore appeared to be caused by energetic shifts of the valence band and/or the conduction band of ZnO. MgxZn1‐xO nanoparticles synthesized by polyacrylamide‐gel method after modified by polyethylene glycol surfactant have a remarkable improvement of stability in the ethanol solvent, indicating that these MZO nanoparticles could be considered as the candidate for the application of solution–processed technologies for optoelectronics at ambient temperature conditions.  相似文献   

9.
采用水热法以CoO、ZnO混合为前驱物制备了ZnO晶体,矿化剂为6 mol/L KOH,填充度70;,温度430℃,两种样品CoO、ZnO组分物质的量百分比分别为0.5∶1和1∶1.当前驱物为nCo∶nZn=0.5∶1时,合成出Zn1-xCoxO晶体,Co元素掺杂量分别为6.83 at;和9.30 at;.当前驱物中nCo∶nZn=1∶1时,Zn1-xCoxO晶体中Co掺杂比例达到9.31 at;,同时伴有Co3O4生成,其中Zn掺杂比例达到14.59 at;,SEM显示,所制备的Zn1-xCoxO具有明显的ZnO晶体特征,形态完整,最大尺度约为50 μm.SQUID测量显示,生成物中Zn1-xCoxO晶体具有顺磁性,Zn1-xCoxO和Co3-xZnxO混合晶体也显示为顺磁性.  相似文献   

10.
Nanocrystalline samples of Zn1‐xMnxS (x = 0.0, 0.02, 0.04) were synthesized by chemical precipitation method and characterized for magnetism. EPR studies showed an evidence of ferromagnetism around room temperature. Hysterisis from vibrating sample magnetometer supports the observation. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
MgxZn1‐xO (x=0.01‐0.3) nanoparticles were synthesized by the sol‐gel technique using solutions of Mg and Zn based organometalic compounds. The electrical properties of Mg doped zinc oxide (ZnO) were studied within wide temperature range from 300 to 500 K under the N2 gas flow (flow rate: 20 sccm) and in the frequency range from 40 Hz to 1 MHz for ac electrical measurements. The dc conductivities and the activation energies were found to be in the range of 10‐9‐10‐6 S/cm at the room temperature and 0.26‐0.86 eV respectively depending on doping rate of these samples. The ac conductivity was well represented by the power law Aωs. The conduction mechanism for all doped ZnO could be related to correlated barrier hopping (CBH) model. The complex impedance plots (Nyquist plot) showed the data points lying on a single semicircle, implying the response originated from a single capacitive element corresponding to the nanoparticle grains. The crystal structures of the MgxZn1‐xO nanoparticles were characterized using X‐ray diffraction. The calculated average particle sizes values of Zn1‐xMgxO samples are found between 29.72 and 22.43 nm using the Sherrer equation. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
ZnO/Co multilayers were fabricated on silicate (100) substrate by a pulsed laser deposition method at room temperature. The x‐ray diffraction (XRD) results reveal that the as‐deposited multilayer film is composed of amorphous phase, which leads to high saturation magnetization and low coercivity. Higher coercivity is observed in the ZnO/Co films annealed at 390 °C due to the formation of crystalline metallic Co and semiconducting ZnO. But much higher annealing temperature leads to the oxidation of metallic Co and the reaction between Co and ZnO, which decreases the saturation magnetization and coercivity obviously.  相似文献   

13.
ZnO thin films with different Mg doping contents (0%, 3%, 5%, 8%, 10%, respectively) were prepared on quartz glass substrates by a modified Pechini method. XRD patterns reveal that all the thin films possess a polycrystalline hexagonal wurtzite structure. The peak position of (002) plane for Mg‐doped ZnO thin films shifts toward higher angle due to the Mg doping. The crystallite size calculated by Debey‐Scherrer formula is in the range of 32.95–48.92 nm. The SEM images show that Mg‐doped ZnO thin films are composed of dense nanoparticles, and the thickness of Mg‐doped ZnO thin films with Mg doped at 8% is around 140 nm. The transmittance spectra indicate that Mg doping can increase the optical bandgap of ZnO thin films. The band gap is tailored from 3.36 eV to 3.66 eV by changing Mg doping concentration between 3% and 10%. The photoluminescence spectra show that the ultraviolet emission peak of Mg‐doped ZnO thin films shifts toward lower wavelength as Mg doping content increases from 3% to 8%. The green emission peak of Mg‐doped ZnO thin films with Mg doping contents were 3%, 8%, and 10% is attributed to the oxygen vacancies or donor‐acceptor pair. These results prove that Mg‐doped ZnO thin films based on a modified Pechini method have the potential applications in the optoelectronic devices.  相似文献   

14.
水热法合成Zn1-xNixO稀磁半导体   总被引:9,自引:6,他引:3  
本文采用水热法,在温度430℃,填充度35%,矿化剂为3mol/L KOH,前驱物为添加适量N iC l2.6H2O的Zn(OH)2,反应时间24h,合成了Zn1-xN ixO稀磁半导体晶体。当在Zn(OH)2中添加一定量的N iC l2.6H2O为前驱物,水热反应产物为掺杂N i的多种形态ZnO混合晶体,对其个体较大的晶体中进行电子探针测量表明,前驱物中的添加量和晶体中实际掺入量有很大的差异,只有少量的N i离子掺入ZnO,最大N i原子分数含量为0.62%。采用超导量子干涉磁强计测量材料的磁性,发现在室温以下,晶体的磁化强度不随温度升高而下降。在室温下,存在明显的磁饱和现象和磁滞回线,说明具有室温下的铁磁性。  相似文献   

15.
The relationship between the oxygen vacancy and ferromagnetism in Mn‐doped ZnO has been studied based on the first‐principles calculations. Three possible charge states of oxygen vacancies, i.e., neutral (VO0), 1+ (VO1+) and 2+ (VO2+) are considered. Results show that the lattice relaxations around oxygen vacancies are large difference under different charge states. It is found that VO1+ and VO2+ oxygen vacancies induce ferromagnetism. However, Mn‐doped ZnO system shows ferromagnetism with VO0 oxygen vacancies in hydrogenated environment, the ferromagnetism is attributed to the interstitial H, which forms a bridge bond and mediates dd coupling and stabilizes the ferromagnetic state. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
本文采用水热法,分别以ZnO、Zn(OH)2为前驱物,添加一定量的MnCl4.4H2O和CuSO4.2H2O, 3mol/LKOH作矿化剂,温度430℃,填充度35%,反应24h,制备了Mn、Cu共掺ZnO晶体。当前驱物为Zn(OH)2时,所得晶体大部分为短柱状晶体,显露正负极面{0001}、{0001-}、负锥面-p{101-1-}和柱面m{1-010},长度约为30 ~50μm。少部分晶体为单锥六棱柱状,显露正锥面p{101-1},柱面m{1-010},负极面-c{0001-},晶体的长度约为100μm,长径比为5:1。当ZnO用作前驱物时,短柱状晶体长度大约为10 ~30μm,晶体的六棱对称性都出现较大的偏差。X射线荧光能谱分析表明,前驱物为ZnO、Zn(OH)2时,Mn离子含量在分别为3.19%和1.62%原子分数,没有检测到Cu离子。虽然Mn、Cu离子的掺入会明显影响晶体形态,磁性测量显示掺杂Mn、Cu的ZnO仍为反铁磁。  相似文献   

17.
采用脉冲激光沉积(PLD)方法在单晶Si(100)衬底上制备Zn1-xMgxO薄膜,研究了退火温度和氧压对Zn1-xMgxO薄膜的结构和磁性的影响.结果表明,Mg掺入量影响ZnO结构相变,当x≥0.25时,Zn1-xMgxO薄膜由六角纤锌矿结构变为立方结构,同时磁性增强.随着氧压的增大和后续退火温度的升高,都会使饱和磁化强度(Ms)呈先增大后减小的趋势.分析表明磁性的变化都与样品中的表面缺陷浓度有关.  相似文献   

18.
Single phase Mn (2.5 at%) doped ZnO nanocrystalline samples were synthesized by reverse micelle method as characterized by Rietveld refinement analysis of X-ray diffraction data, high resolution transmission electron microscopy and selected area electron diffraction analyses. The X-ray photoelectron spectroscopy and electron paramagnetic resonance (EPR) studies indicated that manganese exist as Mn2+ in ZnO lattice. DC magnetization measurements as a function of field and temperature, of 2.5 at% Mn doped ZnO nanoparticles annealed at 675 K, showed room temperature ferromagnetism (RTF). This observation is further confirmed by the EPR spectrum of the sample, which shows a distinct ferromagnetic resonance signal at room temperature. These results indicate that the observed RTF in Mn-doped ZnO may be attributed to the substitutional incorporation of Mn at Zn sites.  相似文献   

19.
水热法合成Zn1-xMnxO稀磁半导体   总被引:3,自引:2,他引:1  
本文采用水热法在430℃,以3mol%.L-1KOH作矿化剂,填充度为35%,反应时间24h,合成了Zn1-xMnxO稀磁半导体晶体。所合成晶体具有ZnO纤锌矿结构,晶面显露正极面{0001}、负极面{0001}、菱面{1011}及负菱面{1011}晶体高度为5~30μm,径高比约为2:1。X荧光能谱(EDS)显示Mn原子百分浓度为2.6%(x=0.026)。晶体呈现低温铁磁性,居里温度50K。  相似文献   

20.
Effects of substrate temperature and atmosphere on the electrical and optical properties of Ga‐doped ZnO thin films deposited by rf magnetron sputtering were investigated. The electrical resistivity of Ga‐doped ZnO (GZO) films decreases as the substrate temperature increases from room temperature to 300°C. A minimum resistivity of 3.3 × 10–4 Ω cm is obtained at 300°C and then the resistivity increases with a further increase in the substrate temperature to 400°C. This change in resistivity with the substrate temperature is related to the crystallinity of the GZO film. The resistivity nearly does not change with the O2/Ar flow ratio, R for R < 0.25 but increases rapidly with R for R > 0.25. This change in resistivity with R is also related to crystallinity. The crystallinity is enhanced as R increases, but if the oxygen partial pressure is higher than a certain level (R = 0.25 ± 0.10) gallium oxides precipitate at grain boundaries, which decrease both carrier concentration and mobility. Optical transmittance increases as R increases for R < 0.75. This change in transmittance with R is related to changes in oxygen vacancy concentration and surface roughness with R. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号