首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raman spectroscopy was used to study the mineral bottinoite and a comparison with the Raman spectra of brandholzite was made. An intense sharp Raman band at 618 cm−1 is attributed to the SbO symmetric stretching mode. The low intensity band at 735 cm−1 is ascribed to the SbO antisymmetric stretching vibration. Low intensity Raman bands were found at 501, 516 and 578 cm−1. Four Raman bands observed at 1045, 1080, 1111 and 1163 cm−1 are assigned to δ SbOH deformation modes. A complex pattern resulting from the overlapping band of the water and hydroxyl units is observed. Raman bands are observed at 3223, 3228, 3368, 3291, 3458 and 3510 cm−1. The first two Raman bands are assigned to water stretching vibrations. The two higher wavenumber Raman bands observed at 3466 and 3552 cm−1 and two infrared bands at 3434 and 3565 cm−1 are assigned to the stretching vibrations of the hydroxyl units. Observed Raman and infrared bands are connected with O H···O hydrogen bonds and their lengths 2.72, 2.79, 2.86, 2.88 and 3.0 Å (Raman) and 2.73, 2.83 and 3.07 Å (infrared). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Raman spectra of brandholzite Mg[Sb2(OH)12]·6H2O were studied, complemented with infrared spectra, and related to the structure of the mineral. An intense Raman sharp band at 618 cm−1 is attributed to the SbO symmetric stretching mode. The low‐intensity band at 730 cm−1 is ascribed to the SbO antisymmetric stretching vibration. Low‐intensity Raman bands were found at 503, 526 and 578 cm−1. Corresponding infrared bands were observed at 527, 600, 637, 693, 741 and 788 cm−1. Four Raman bands observed at 1043, 1092, 1160 and 1189 cm−1 and eight infrared bands at 963, 1027, 1055, 1075, 1108, 1128, 1156 and 1196 cm−1 are assigned to δ SbOH deformation modes. A complex pattern resulting from the overlapping band of the water and hydroxyl units is observed. Raman bands are observed at 3240, 3383, 3466, 3483 and 3552 cm−1; infrared bands at 3248, 3434 and 3565 cm−1. The Raman bands at 3240 and 3383 cm−1 and the infrared band at 3248 cm−1 are assigned to water‐stretching vibrations. The two higher wavenumber Raman bands observed at 3466 and 3552 cm−1 and two infrared bands at 3434 and 3565 cm−1 are assigned to the stretching vibrations of the hydroxyl units. Observed Raman and infrared bands in the OH stretching region are associated with O‐H···O hydrogen bonds and their lengths 2.72, 2.79, 2.86, 2.88 and 3.0 Å (Raman) and 2.73, 2.83 and 3.07 Å (infrared). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The oriented single‐crystal Raman spectrum of leiteite has been obtained and the spectra related to the structure of the mineral. The intensities of the observed bands vary according to orientation, allowing them to be assigned to either Ag or Bg modes. Ag bands are generally the most intense in the CAAC spectrum, followed by ACCA, CBBC, and ABBA whereas Bg bands are generally the most intense in the CBAC followed by ABCA. The CAAC and ACCA spectra are identical, as are those obtained in the CBBC and ABBA orientations. Both cross‐polarised spectra are identical. Band assignments were made with respect to bridging and non‐bridging As O bonds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Raman spectroscopy has been used to characterize the antimonate mineral bahianite Al5Sb35+O14(OH)2, a semi‐precious gemstone. The mineral is characterized by an intense Raman band at 818 cm−1 assigned to Sb3O1413− stretching vibrations. Other lower intensity bands at 843 and 856 cm−1 are also assigned to this vibration, and this concept suggests the non‐equivalence of SbO units in the structure. Low‐intensity Raman bands at 669 and 682 cm−1 are probably assignable to the OSbO antisymmetric stretching vibrations. Raman bands at 1756, 1808 and 1929 cm−1 may be assigned to δ SbOH deformation modes, while the bands at 3462 and 3495 cm−1 are assigned to AlOH stretching vibrations. The complexity in the low wave number region is attributed to the composition of the mineral. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Insight into the unique structure of hydrotalcites has been obtained using Raman spectroscopy. Gallium‐containing hydrotalcites of formula Mg4Ga2(CO3)(OH)12· 4H2O (2:1 Ga‐HT) to Mg8Ga2(CO3)(OH)20· 4H2O (4:1 Ga‐HT) have been successfully synthesized and characterized by X‐ray diffraction and Raman spectroscopy. The d(003) spacing varied from 7.83 Å for the 2:1 hydrotalcite to 8.15 Å for the 3:1 gallium‐containing hydrotalcite. Raman spectroscopy complemented with selected infrared data has been used to characterize the synthesized gallium‐containing hydrotalcites of formula Mg6Ga2(CO3)(OH)16· 4H2O. Raman bands observed at around 1046, 1048 and 1058 cm−1 are attributed to the symmetric stretching modes of the CO32− units. Multiple ν3 CO32− antisymmetric stretching modes are found at around 1346, 1378, 1446, 1464 and 1494 cm−1. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands observed at 710 and 717 cm−1 assigned to the ν4 (CO32−) modes support the concept of multiple carbonate species in the interlayer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2· H2O, was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As‐OH units, as well as the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O H···O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2− units in the crystal structure of burgessite was proved, which is in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Although several fundamental physico‐chemical aspects of nickel sulfides have been studied in detail, particularly for millerite (nickel(II) monosulfide), the most common nickel sulfide mineral, no satisfactory investigation of optical vibrational modes has been reported previously. In this paper, we provide a definitive assignment of the optical phonons in millerite, investigated by polarized Raman spectroscopy on an oriented single crystal. The impact of the power of the incident laser beam on the spectra has also been investigated, revealing evidence for degradation in the quality of the spectra at sufficiently high laser power. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Insight into the unique structure of layered double hydroxides has been obtained using a combination of X‐ray diffraction and Raman spectroscopy. Indium‐containing hydrotalcites of formula Mg4In2(CO3)(OH)12· 4H2O [2:1 In‐LDH (layered double hydroxides)] through to Mg8In2(CO3)(OH)18· 4H2O (4:1 In‐LDH) with variation in the Mg : In ratio have been successfully synthesized. The d(003) spacing varied from 7.83 Å for the 2:1 LDH to 8.15 Å for the 3:1 indium‐containing layered double hydroxide. Raman spectroscopy complemented with selected infrared data has been used to characterize the synthesized indium‐containing layered double hydroxides of formula Mg6In2(CO3)(OH)16· 4H2O. Raman bands observed at around 1058, 1075 and 1115 cm−1 are attributed to the symmetric stretching modes of the CO32− units. Multiple ν3 CO32− antisymmetric stretching modes are found at around 1348, 1373, 1429 and 1488 cm−1 in the infrared spectra. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands observed at 690 and 700 cm−1 assigned to the ν4 CO32− modes support the concept of multiple carbonate species in the interlayer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The mineral lewisite, (Ca, Fe, Na)2(Sb, Ti)2O6(O, OH)7, an antimony-bearing mineral, has been studied by Raman spectroscopy. A comparison is made with the Raman spectra of other minerals, including bindheimite, stibiconite, and roméite. The mineral lewisite is characterised by an intense sharp band at 517 cm?1 with a shoulder at 507 cm?1 assigned to SbO stretching modes. Raman bands of medium intensity for lewisite are observed at 300, 356, and 400 cm?1. These bands are attributed to OSbO bending vibrations. Raman bands in the OH stretching region are observed at 3200, 3328, 3471 cm?1, with a distinct shoulder at 3542 cm?1. The latter is assigned to the stretching vibration of OH units. The first three bands are attributed to water stretching vibrations. The observation of bands in the 3200–3500 cm?1 region suggests that water is involved in the lewisite structure. If this is the case then the formula may be better written as (Ca, Fe2+, Na)2(Sb, Ti)2(O, OH)7 xH2O.  相似文献   

11.
Raman spectroscopy has been used to study the arsenate minerals haidingerite Ca(AsO3OH)·H2O and brassite Mg(AsO3OH)·4H2O. Intense Raman bands in the haidingerite spectrum observed at 745 and 855 cm−1 are assigned to the (AsO3OH)2−ν3 antisymmetric stretching and ν1 symmetric stretching vibrational modes. For brassite, two similarly assigned intense bands are found at 809 and 862 cm−1. The observation of multiple Raman bands in the (AsO3OH)2− stretching and bending regions suggests that the arsenate tetrahedrons in the crystal structures of both minerals studied are strongly distorted. Broad Raman bands observed at 2842 cm−1 for haidingerite and 3035 cm−1 for brassite indicate strong hydrogen bonding of water molecules in the structure of these minerals. OH···O hydrogen‐bond lengths were calculated from the Raman spectra based on empirical relations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Polarised IR and Raman spectra of Na3Li(MoO4)2· 6H2O single crystal were measured. Discussion of the results is based on the factor group approach for the trigonal R 3c(C3v6) space group with Z = 2. The assignment of the observed bands was performed on the basis of their polarisation behaviour and literature data. The obtained results for the spontaneous Raman scattering were used in the analysis of the stimulated Raman spectra of the material studied—a new Raman laser crystal. The promoting modes of the stimulated effect were identified. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Magnesium minerals are important for understanding the concept of geosequestration. One method of studying the hydrated hydroxy magnesium carbonate minerals is through vibrational spectroscopy. A combination of Raman and infrared spectroscopy has been used to study the mineral hydromagnesite. An intense band is observed at 1121 cm−1, attributed to the CO32−ν1 symmetric stretching mode. A series of infrared bands at 1387, 1413 and 1474 cm−1 are assigned to the CO32−ν3 antisymmetric stretching modes. The CO32−ν3 antisymmetric stretching vibrations are extremely weak in the Raman spectrum and are observed at 1404, 1451, 1490 and 1520 cm−1. A series of Raman bands at 708, 716, 728 and 758 cm−1 are assigned to the CO32−ν2 in‐plane bending mode. The Raman spectrum in the OH stretching region is characterized by bands at 3416, 3516 and 3447 cm−1. In the infrared spectrum, a broad band is found at 2940 cm−1, which is assigned to water stretching vibrations. Infrared bands at 3430, 3446, 3511, 2648 and 3685 cm−1 are attributed to MgOH stretching modes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Raman spectra of two well‐defined types of koritnigite crystals from the Jáchymov ore district, Czech Republic, were recorded and interpreted. No substantial differences were observed between both crystal types. The observed Raman bands were attributed to the (AsO3OH)2− stretching and bending vibrations as well as stretching and bending vibrations of water molecules and hydroxyl ions. The non‐interpreted Raman spectra of koritnigite from the RRUFF database and the published infrared spectra of cobaltkoritnigite were used for comparison. The O H···O hydrogen bond lengths in the crystal structure of koritnigite were inferred from the Raman spectra and compared with those derived from the X‐ray single‐crystal refinement. The presence of (AsO3OH)2− units in the crystal structure of koritnigite was proved from the Raman spectra, which supports the conclusions of the X‐ray structure analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The pressure dependences of the peaks observed in the micro‐Raman spectra of Prussian blue (Fe4[Fe(CN)6]3), potassium ferricyanide (K3[Fe(CN)6]), and sodium nitroprusside (Na2[Fe(CN)5(NO)]·2H2O) have been measured up to 5.0 GPa. The vibrational modes of Prussian blue appearing at 201 and 365 cm−1 show negative dν/dP values and Grüneisen parameters and are assigned to the transverse bending modes of the Fe C N Fe linkage which can contribute to a negative thermal expansion behavior. A phase transition occurring between 2.0 and 2.8 GPa in potassium ferricyanide is shown by changes in the spectral region 150–700 cm−1. In the spectra of the nitroprusside ion, there are strong interactions between the FeN stretching mode and the FeNO bending and the axial CN stretching modes. The pressure dependence of the NO stretching vibration is positive, 5.6 cm−1 GPa−1, in contrast to the negative behavior in the iron(II)‐meso‐tetraphenyl porphyrinate complex. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Many minerals based upon antimonite and antimonate anions remain to be studied. Most of the bands occur in the low wavenumber region, making the use of infrared spectroscopy difficult. This problem can be overcome by using Raman spectroscopy. The Raman spectra of the mineral klebelsbergite Sb4O4(OH)2(SO4) were studied and related to the structure of the mineral. The Raman band observed at 971 cm−1 and a series of overlapping bands are observed at 1029, 1074, 1089, 1139 and 1142 cm−1 are assigned to the SO42−ν1 symmetric and ν3 antisymmetric stretching modes, respectively. Two Raman bands are observed at 662 and 723 cm−1, which are assigned to the Sb O ν3 antisymmetric and ν1 symmetric stretching modes, respectively. The intense Raman bands at 581, 604 and 611 cm−1 are assigned to the ν4 SO42− bending modes. Two overlapping bands at 481 and 489 cm−1 are assigned to the ν2 SO42− bending mode. Low‐intensity bands at 410, 435 and 446 cm−1 may be attributed to O Sb O bending modes. The Raman band at 3435 cm−1 is attributed to the O H stretching vibration of the OH units. Multiple Raman bands for both SO42− and Sb O stretching vibrations support the concept of the non‐equivalence of these units in the klebelsbergite structure. It is proposed that the two sulfate anions are distorted to different extents in the klebelsbergite structure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Raman spectroscopy has been used to study vanadates in the solid state. The molecular structure of the vanadate minerals vésigniéite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2·2H2O] have been studied by Raman spectroscopy and infrared spectroscopy. The spectra are related to the structure of the two minerals. The Raman spectrum of vésigniéite is characterized by two intense bands at 821 and 856 cm−1 assigned to ν1 (VO4)3− symmetric stretching modes. A series of infrared bands at 755, 787 and 899 cm−1 are assigned to the ν3 (VO4)3− antisymmetric stretching vibrational mode. Raman bands at 307 and 332 cm−1 and at 466 and 511 cm−1 are assigned to the ν2 and ν4 (VO4)3− bending modes. The Raman spectrum of volborthite is characterized by the strong band at 888 cm−1, assigned to the ν1 (VO3) symmetric stretching vibrations. Raman bands at 858 and 749 cm−1 are assigned to the ν3 (VO3) antisymmetric stretching vibrations; those at 814 cm−1 to the ν3 (VOV) antisymmetric vibrations; that at 508 cm−1 to the ν1 (VOV) symmetric stretching vibration and those at 442 and 476 cm−1 and 347 and 308 cm−1 to the ν4 (VO3) and ν2 (VO3) bending vibrations, respectively. The spectra of vésigniéite and volborthite are similar, especially in the region of skeletal vibrations, even though their crystal structures differ. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Twisted bilayer graphene, in which interlayer interaction plays a critical role in this coupled system, is characterized for its angle‐dependent electronic and optical properties. Here, we present a systematic Raman study of single‐crystal twisted bilayer graphene grains, with the spectra of each bilayer graphene precisely correlated to its twist angle using combined transmission electron microscopic technique. Van Hove singularities develop as a result of band rehybridization at the crossing Dirac cones of the two layers, giving rise to a critical twist angle that determines the energy separation between the saddle points in the band structure and the resonance Raman spectra accordingly. The 2D mode becomes sensitive to the twist angle, showing the angle‐dependent position, peak width, and intensity. Our results interpreted in the framework of angle‐dependent double resonance scattering provide an important experimental perspective in understanding the coupled bilayer graphene system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The mineral gerstleyite is described as a sulfosalt as opposed to a sulfide. This study focuses on the Raman spectrum of gerstleyite Na2(Sb,As)8S13·2H2O and makes a comparison with the Raman spectra of other common sulfides including stibnite, cinnabar and realgar. The intense Raman bands of gerstleyite at 286 and 308 cm−1 are assigned to the SbS3E antisymmetric and A1 symmetric stretching modes of the SbS3 units. The band at 251 cm−1 is assigned to the bending mode of the SbS3 units. The mineral stibnite also has basic structural units of Sb2S3 and SbS3 pyramids with C3v symmetry. Raman bands of stibnite Sb2S3 at 250, 296, 372 and 448 cm−1 are assigned to Sb S stretching vibrations and the bands at 145 and 188 cm−1 to S Sb S bending modes. The Raman band for cinnabar HgS at 253 cm−1 fits well with the assignment of the band for gerstleyite at 251 cm−1 to the S Sb S bending mode. Raman bands in similar positions are observed for realgar AsS and orpiment As2S3. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy of gas‐phase CO2 is demonstrated using a single femtosecond (fs) laser beam. A shaped ultrashort laser pulse with a transform‐limited temporal width of ∼7 fs and spectral bandwidth of ∼225 nm (∼3500 cm−1) is employed for simultaneous excitation of the CO2 Fermi dyads at ∼1285 and ∼1388 cm−1. CARS signal intensities for the two Raman transitions and their ratio as a function of pressure are presented. The signal‐to‐noise ratio of the single beam–generated CO2 CARS signal is sufficient to perform concentration measurements at a rate of 1 kHz. The implications of these experiments for measuring CO2 concentrations and rapid pressure fluctuations in hypersonic and detonation‐based chemically reacting flows are also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号