首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Raman spectroscopy is an inelastic light scattering technique that is capable of probing biochemical and biomolecular structures and conformations of tissue. This study aims to characterize the in vivo Raman spectroscopic properties of different normal oral tissues in the fingerprint region (800–1800 cm−1) and to assess distinctive biochemical variations of different anatomical regions in the oral cavity. A specially designed fiber‐optic Raman probe with a ball lens was utilized for real‐time, in vivo Raman measurements of various oral tissue sites (i.e. inner lip, attached gingiva, floor, dorsal tongue, ventral tongue, hard palate, soft palate, and buccal). The semiquantitative non‐negativity‐constrained least squares minimization fitting of reference biochemicals representing oral tissue constituents (i.e. hydroxyapatite, keratin, collagen, DNA, and oleic acid) and partial least squares‐discriminant analysis (PLS‐DA) were employed to assess the significance of inter‐anatomical variability. A total of 402 high‐quality in vivo oral Raman spectra were acquired from 20 subjects. The histological characteristics of different oral tissues were found to have influence on the in vivo Raman spectra and could be grossly divided into three major clusterings: (1) buccal, inner lip, and soft palate; (2) dorsal, ventral tongue, and floor; (3) gingiva and hard palate. The PLS‐DA multiclass algorithms were able to identify different tissue sites with varying accuracies (inner lip 83.1%, attached gingiva 91.3%, floor 86.1%, dorsal tongue 88.8%, ventral tongue 83.1%, hard palate 87.6%, soft palate 83.3%, and buccal mucosa 85.3%), bringing out the similarities among different oral tissues at the biomolecular level. This study discloses that inter‐anatomical variability is significant and should be considered as an important parameter in the interpretation and rendering of Raman diagnostic algorithms for oral tissue diagnosis and characterization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
拉曼光谱分析技术在探测与组织病理学相关的分子变化方面具有特别的潜力和优势,并且使无损、实时、快速的光学诊断成为可能.采用785 nm半导体激光器,透射式的全息光栅,背向感光、深度耗尽的CCD探测器及特殊设计的光纤拉曼探头构建了一台快速拉曼光谱测试装置.所设计的光纤拉曼探头可在减少荧光信号和瑞利散射影响的同时,最大限度地收集生物组织的拉曼信号,同时解决了平面光栅衍射光束的谱线弯曲问题,提高了仪器的信噪比,使装置具有较高的灵敏度并可快速测量获得人体组织的近红外拉曼信号.通过新鲜猪肉的脂肪和肌肉组织的拉曼光谱信号的检测,验证了测试装置的良好性能; 在此基础上,研究了鼻咽癌组织样品存放时间对拉曼光谱的影响,并在1~5 s时间内快速测量获得了人离体鼻咽癌组织的近红外拉曼光谱.  相似文献   

3.
Raman spectroscopy was applied in this research to monitor the overall health and degradation of porcine livers perfused ex vivo using the VasoWaveW® perfusion system. A novel Raman‐based diagnostic analysis was developed that enables near real‐time and label‐free monitoring of organ health during ex vivo perfusion designed to extend the useful life of the organ for transplantation. Multivariate statistical analysis of Raman spectra of organ perfusate fluid, using a combination of principal component analysis and linear discriminant analysis, proved to be an effective technique to assess the degradation properties of the livers. Three livers (with replicates) were perfused ex vivo under different pressures and temperatures and were compared with a 24‐h time‐course. Results indicated that perfusion pressure was a more significant factor in organ degradation than was temperature. In addition, a non‐linear degradation profile was identified for all three perfused livers, and this profile was different for individual livers, demonstrating the time‐dependent transition from its initial ‘healthy’ state towards a more ‘unhealthy’ degenerative state at 24 h. The Raman spectroscopy‐based approach described here has potential applications in perfusion and diagnostic instrumentation that can be used in near real‐time during organ transit and in operating rooms to help identify appropriately healthy organs for transplantation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Raman spectroscopy is rapidly moving from an experimental technique for the analysis of biological molecules to a tool for the real-time clinical diagnosis and in situ evaluation of the oral tissue in medical and dental research. The purpose of this study is to identify various applications of Raman spectroscopy, to evaluate the contemporary status, and to explore future directions in the field of dentistry. Several in-depth applications are presented to illustrate Raman spectroscopy in early diagnosis of soft tissue abnormalities. Raman spectroscopy allows researchers to analyze histological and biochemical composition of biological tissues. The technique not only demonstrates its role in the disclosure of dysplasia and malignancy, but also in performing guided biopsies, diagnosing sialoliths, and assessment of surgical margins. Raman spectroscopy is used to identify the molecular structures and their components to give substantial information about the chemical structure properties of these molecules. In this article, we acquaint the utilization of Raman spectroscopy in analyzing the soft tissues in relation to dentistry.  相似文献   

5.
Focus‐engineered coherent anti‐Stokes Raman scattering (FE‐CARS) microscopy is used to highlight the lateral interfaces between chemically distinct media. Interface highlighting is achieved by using a HG10 mode for the Stokes laser beam and a HG00 mode for the pump laser beam in the forward detection scheme. The spectral and the orientation dependence of FE‐CARS are found to be in agreement with theoretical predictions. A brief discussion on the relevance of this technique for imaging third‐order nonlinear susceptibility interfaces in thin samples of biological or chemical importance is presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Invasion of melanoma cells from the primary tumor involves interaction with adjacent tissues and extracellular matrix. The extent of this interaction is not fully understood. In this study Raman spectroscopy was applied to cryo-sections of established 3D models of melanoma in human skin. Principal component analysis was used to investigate differences between the tumor and normal tissue and between the peri-tumor area and the normal skin. Two human melanoma cells lines A375SM and C8161 were investigated and compared in 3D melanoma models. Changes were found in protein conformations and tryptophan configurations across the entire melanoma samples, in tyrosine orientation and in more fluid lipid packing only in tumor dense areas, and in increased glycogen content in the peri-tumor areas of melanoma. Raman spectroscopy revealed changes around the perimeter of a melanoma tumor as well as detecting differences between the tumor and the normal tissue.  相似文献   

7.
Raman spectroscopy is a vibrational spectroscopic technique that can be used to monitor the therapeutic efficacy of anticancer drugs during carcinogenesis in a non‐invasive and label‐free manner. The present study aims to investigate the biochemical changes exerted upon free silibinin (SIL) and its nanoparticulate (SILNPs) treatment against 7,12‐dimethylbenz[a]anthracene (DMBA)‐induced oral carcinogenesis in the fingerprint region of 1800–500 cm−1 using HE‐785 Raman spectrometer. Raman spectra differed significantly between the control and tumor tissues, with tumor tissues characterized by increased intensities of vibrational bands such as nucleic acids, phenylalanine and tryptophan and a lower percentage of lipids when compared to the control tissues. Further, oral administration of free SIL and SILNPs significantly increased lipids and decreased the levels of tryptophan, phenylalanine and nucleic acid contents. Overall, the treatment of nanoparticulate SIL was found to be a more potent antitumor effect than free SIL in preventing the formation of tumor and also brought back the several Raman bands to a normal range in the buccal mucosa of hamsters during DMBA‐induced oral carcinogenesis. In addition, the detailed secondary structure of proteins in the control and experimental groups is also presented. Furthermore, the diagnostic algorithms based on principal component linear discriminant analysis (PC‐LDA) achieved an overall sensitivity of 94–100% and specificity of 76–100%. These results further demonstrate that Raman spectroscopy associated with PC‐LDA diagnostic algorithms could be a valuable tool for rapid and sensitive detection of specific biomolecular changes at the molecular level in response to anticancer drug. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The techniques of inverse Raman spectroscopy, Raman‐induced polarization spectroscopy (RIPS), and optical heterodyne RIPS (OHD‐RIPS) are compared by probing the Q‐branch of the nitrogen molecule. The signal is measured employing either a photomultiplier tube (low background level–RIPS) or a photodetector (high background level–IRS and OHD‐RIPS). The measurements are performed using atmospheric mixtures of N2 Ar with concentrations varying from 0 to 79% N2. This strategy permits estimation of detection limits using the different techniques. Pump and probe energy levels are varied independently to study signal dependence on laser irradiance. A theoretical treatment is presented on the basis of the Raman susceptibility equations, which permits the calculation of spectra for all three techniques. Calculated Q‐branch spectra are compared with the measured spectra for the interactions of a linearly polarized probe beam with a linearly or circularly polarized pump beam. The polarizer angle in the detection path for OHD‐RIPS has a dramatic effect on the shape of the spectrum. The calculated and experimental OHD‐RIPS spectra are in good agreement over the entire range of investigated polarizer angles. Detection limits using these techniques are analyzed to suggest their applicability for measuring other species of importance in combustion and plasma systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Micro‐Raman spectroscopy (MRS) was utilized for the first time to evaluate the effect of indole‐3‐carbinol (I3C) on acute alcoholic liver injury in vivo. In situ Raman analysis of tissue sections provided distinct spectra that can be used to distinguish alcoholic liver injury as well as ethanol‐induced liver fibrosis from the normal state. Sixteen mice with liver diseases including acute liver injury and chronic liver fibrosis, and eight mice with normal liver tissues, and eight remedial mice were studied employing the Raman spectroscopic technique in conjunction with biomedical assays. The biochemical changes in mouse liver tissue when liver injury/fibrosis occurs such as the loss of reduced glutathione (GSH), and the increase of collagen (α‐helix protein) were observed by MRS. The intensity ratio of two Raman peaks (I1450/I666) and in combination with statistical analysis of the entire Raman spectrum was found capable of classifying liver tissues with different pathological features. Raman spectroscopy therefore is an important candidate for a nondestructive in vivo screening of the effect of drug treatment on liver disease, which potentially decreases the time‐consuming clinical trials. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Breast cancer is the most common cancer amongst women worldwide. Early detection of this cancer results in better prognosis. Owing to the disadvantages of currently available screening tools for early detection of this cancer, rapid and sensitive alternatives such as optical spectroscopic techniques are being extensively explored. Detection of premalignant lesions using these techniques has been reported. However, premalignant lesions are risk indicators and may not be true predictors of tumor development. Therefore, the current study aims at correlation between spectral changes and tumor appearance. In this context, transcutaneous in vivo spectra were acquired from same carcinogen‐induced rats immediately before carcinogen treatment, 3, 8–10, and 12–14 weeks after carcinogen treatment and from frank tumors. These were analyzed using multivariate statistical tools principal component analysis and principal component linear discriminant analysis. Further, a complex test data set consisting of spectra from rats of varying ages, tumor appearance times, and tumor induction protocols was used to test the feasibility of correctly identifying controls and pretumors using Raman spectroscopy. Results suggest feasibility of distinguishing pretumor spectra from controls. Taking into consideration the heterogeneity of afflicted breast, rat‐wise analysis was performed wherein a rat was declared ‘will develop tumor’, even if one spectrum was found abnormal. Using this criterion, in vivo Raman spectroscopy could predict tumor appearance with 82% sensitivity and 95% specificity. Prospectively, combined with emerging technologies like deep Raman spectroscopy and fiber‐probe‐based whole sample imaging, Raman spectroscopy may prove as an invaluable adjunct to currently available breast cancer screening tools. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The detection of explosives and their associated compounds for security screening is an active area of research and a wide variety of detection methods are involved in this very challenging area. Surface‐enhanced Raman scattering (SERS) spectroscopy is one of the most sensitive tools for the detection of molecules adsorbed on nano‐scale roughened metal surface. Moreover, SERS combines high sensitivity with the observation of vibrational spectra of species, giving complete information on the molecular structure of material under study. In this paper, SERS was applied to the detection of very small quantities of explosives adsorbed on industrially made substrates. The spectra were acquired with a compact Raman spectrometer. Usually, a high signal‐to‐noise (S/N) spectrum, suitable for identification of explosive molecules down to few hundreds of picograms, was achieved within 30 s. Our measurements suggest that it is possible to exploit SERS using a practical detection instrument for routine analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
We have developed a micro‐Raman spectrometer system for use to differentiate tumor lesions from normal skin using an in vivo animal model. A study of 494 Raman spectra from 24 mice revealed different spectral patterns at different depths and between normal and tumor‐bearing skin sites. A peak at 899 cm−1 (possibly from proline or fatty acids) and one with higher intensity in the 1325–1330 cm−1 range (assigned to nucleic acids) were correlated with the presence of tumors, which can potentially be used as biomarkers for skin cancer detection. Spectral diagnosis performed on the murine tumor model achieved a diagnostic sensitivity of 95.8% and specificity of 93.8%. These results encourage us to develop further the use of confocal Raman spectroscopy as a clinical tool for noninvasive human skin biochemical analysis, particularly in relation to skin cancer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Insight into the unique structure of hydrotalcites (HTs) has been obtained using Raman spectroscopy. Gallium‐containing HTs of formula Zn4 Ga2(CO3)(OH)12 · xH2O (2:1 ZnGa‐HT), Zn6 Ga2(CO3)(OH)16 · xH2O (3:1 ZnGa‐HT) and Zn8 Ga2(CO3)(OH)18 · xH2O (4:1 ZnGa‐HT) have been successfully synthesised and characterised by X‐ray diffraction (XRD) and Raman spectroscopy. The d(003) spacing varies from 7.62 Å for the 2:1 ZnGa‐HT to 7.64 Å for the 3:1 ZnGa‐HT. The 4:1 ZnGa‐HT showed a decrease in the d(003) spacing, compared to the 2:1 and 3:1 compounds. Raman spectroscopy complemented with selected infrared data has been used to characterise the synthesised gallium‐containing HTs. Raman bands observed at around 1050, 1060 and 1067 cm−1 are attributed to the symmetric stretching modes of the (CO32−) units. Multiple ν3 (CO32−) antisymmetric stretching modes are found between 1350 and 1520 cm−1, confirming multiple carbonate species in the HT structure. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands observed at 710 and 717 cm−1 and assigned to the ν4 (CO32−) modes support the concept of multiple carbonate species in the interlayer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In the present study, Raman spectroscopy has been employed in the discrimination of the saliva of normal subjects from patients with oral submucous fibrosis and oral squamous cell carcinomaat 785‐nm excitation. From the spectral signatures, prominent difference between normal and abnormal group because of variations in metabolic and pathological conditions of the subjects was observed. Principal component analysis coupled with linear discriminant analysis yielded a diagnostic sensitivity of 96.4 and 93.8% and a specificity of 70.2 and 95.7% in the classification of normal from premalignant and normal from malignant, respectively, confirming the efficacy of Raman spectroscopy in the classification of normal and oral abnormalities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Raman spectroscopy complemented with infrared spectroscopy has been used to study a series of selected natural halogenated carbonates from different origins, including bastnasite, parisite and northupite. The position of CO32− symmetric stretching vibration varies with the mineral composition. An additional band for northupite at 1107 cm−1 is observed. Raman spectra of bastnasite, parisite and northupite show single bands at 1433, 1420 and 1554 cm−1, respectively, assigned to the ν3 (CO3)2− asymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the CaO6 octahedron. No ν2 Raman bending modes are observed for these minerals. The band is observed in the infrared spectra, and multiple ν2 modes at 844 and 867 cm−1 are observed for parisite. A single intense infrared band is found at 879 cm−1 for northupite. Raman bands are observed forthe carbonate ν4 in‐phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite and 714 cm−1 for northupite. Multiple bands are observed in the OH stretching region for selected bastansites and parisites, indicating the presence of water and OH units in the mineral structure. The presence of such bands brings into question the actual formula of these halogenated carbonate minerals. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
In‐situ Raman spectroscopy was performed on chemical vapor deposited graphene microbridge (3 μm × 80 μm) under electrical current density up to 2.58 × 108 A/cm2 in ambient conditions. We found that both the G and the G′ peak of the Raman spectra do not restore back to the initial values at zero current, but to slightly higher values after switching off the current through the microbridge. The up‐shift of the G peak and the G′ peak, after switching off the electrical current, is believed to be due to p‐doping by oxygen adsorption, which is confirmed by scanning photoemission microscopy. Both C–O and C=O bond components in the C1s spectra from the microbridge were found to be significantly increased after high electrical current density was flown. The C=O bond is likely the main source of the p‐doping according to our density functional theory calculation of the electronic structure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Oral cancer is a major cause of mortality in South Asian men owing to rampant tobacco abuse. Cancers are also reported in non‐tobacco habitués, especially women, attributed to chronic irritations from irregular/sharp teeth, improper fillings, and poorly fit dentures. Conventional screening approaches are shown to be effective for high‐risk groups (tobacco/alcohol habitués). Raman spectroscopy (RS) is being extensively explored as an alternate/adjunct tool for diagnosis and management of oral cancers. In a previous Raman study on sequential oral carcinogenesis using hamster buccal pouch model, misclassifications between spectra from control and carcinogen [7,12‐dimethylbenz(a)anthracene (DMBA)]‐treated tissues were observed. Histopathology of some control tissues suggested pathological changes, attributable to repeated forceps‐induced irritations/trauma during animal handling. To explore these changes, in the present study, we recorded spectra from three different types of controls – vehicle control (n = 45), vehicle contralateral (n = 45), and DMBA contralateral (n = 70) – exposed to varying degree of forceps handling, along with DMBA‐treated pouches (n = 70) using a 14‐week carcinogenesis protocol. Spectra certified on the basis of histopathology and abnormal cell proliferation (cyclin D1 expression) were used to build models that were evaluated by independent test spectra from an exclusive set of DMBA‐treated and control animals. Many DMBA‐contralateral, vehicle‐control, and vehicle‐contralateral spectra were identified as higher pathologies, which subsequently corroborated with histopathology/cyclin D1 expression. Repeated forceps‐mediated injuries/irritations, during painting and animal handling, may elicit inflammatory responses, leading to neoplasm. The findings of the study suggest that RS could identify micro‐changes. Further, RS‐based in vivo imaging can serve as a promising label‐free tool for screening even in the non‐habitué population where conventional screening is shown to be not effective. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The purpose of this study is to investigate the mechanism of solid‐state polymorphic transition of p‐aminobenzoic acid (PABA) using in situ Raman spectroscopy measurement. The polymorphic transition experiments were conducted on a micro quartz vessel mounted on a microscope, hot and cold stage, under isothermal conditions. The temperature was precisely controlled by a standalone temperature controller equipped with liquid nitrogen cooling system. The Raman spectroscopy probe was positioned on the surface of the solid sample in the micro vessel. The polymorphic transition progression was in situ monitored and recorded by Raman spectroscopy. Based on the polymorphic transition rate resulted from the quantitative analysis of Raman spectra, the mechanism of solid‐state polymorphic transition of PABA was examined by various empirical kinetic models. An Arrhenius analysis was also performed to calculate activation energies from 134.7 kJ mol−1 to 137.7 kJ mol−1 for the transition. The results demonstrated that in situ Raman spectroscopy is a valuable and accurate technique to probe polymorphic transition process. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
20.
An accurate and simple method, Raman peak‐shift simulation, is proposed to determine the characteristics of a laser‐driven shock wave. Using the principle of the Raman peaks shifting at high pressure and the pressure distribution in the gauge layer, the profile of the Raman peak can be numerically simulated. Combined with time‐resolved Raman spectroscopy, some main characteristics of the shock wave were determined. In the experiment, polycrystalline anthracene was used as the pressure gauge. The pump–probe technique was used to obtain the time‐resolved Raman spectra of anthracene under shock loading. The velocity of the shock wave, the peak pressure and the rise time of the shock front were determined by simulating the experimental spectra numerically. The result shows that the method of Raman peak‐shift simulation is effective in obtaining the characteristics of a laser‐driven shock wave. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号