首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnO thin films were prepared by spray pyrolytic decomposition of zinc acetate onto a glass substrate. These films were analyzed for the optical and electrical properties. Optical studies show that in these films the electronic transition is of the direct transition type. The optical energy gap for the films of different thicknesses is estimated to be in the range 2.98 – 3.09 eV. Electrical studies indicate that the films exhibit thermally activated electronic conduction and the activation energies are found to be dependent on the film thickness. The complex impedance measurements were carried out over a wide range of frequencies at room temperature (300 K). All the impedance spectra contain only a single arc, but the arc has a non‐zero intersection with the real axis in the high frequency region. Also, the arc has its centre lying below with the real axis which indicates the multirelaxation behavior of the films. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Good homogeneous and stoichiometric ZnO nanofiber thin films have been deposited onto cleaned glass substrate by a simple spray pyrolysis technique under atmospheric pressure using zinc acetate precursor at temperature 200 °C. Films of various thicknesses have been obtained by varying the deposition time, while all other deposition parameters such as spray rate, carrier gas pressure and distance between spray nozzle to substrate were kept constant. Surface morphology and optical properties of the as deposited thin films have been studied by Scanning Electron Microscopy (SEM) attached with an EDX and UV visible spectroscopy. From EDX data, atomic weight% of Zinc and Oxygen were found to be 49.22% and 49.62% respectively. The SEM micrograph of the film shows uniform deposition and scattered nano fiber around the nucleation centers. The optical band gap of the ZnO thin films was found to be in the range 3.3 to 3.4 eV and the band gap decreases with thickness of the film. Optical constants such as refractive index, extinction coefficient, real and imaginary parts of dielelectric constants were evaluated from reflectance and absorbance spectra. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Transparent Zinc Oxide (ZnO) thin films have been grown on Si (100) and Sapphire (0001) substrates by RF magnetron sputtering for different growth time intervals (10, 30 and 60 min) to study the substrate and thickness effects. All the films have been grown at a substrate temperature of 450 °C. It has been found that the average growth rate on Si (100) substrate (8.6 nm/min) is higher than that on Sapphire (0001) substrate (2.6 nm/min) in an identical growth condition which clearly shows the virtual role of substrates. The lower growth rate on Sapphire (0001) suggests that the increasingly ordered and uniform growth due to less lattice mismatch. The grown films have been characterized by X‐ray diffraction (XRD), Reflectance, Photoluminescence (PL) and Hall measurements. The XRD result (FWHM) reveals that for lower growth time, the films grown on Si (100) is better than on Sapphire (0001). Conversely, for higher growth time, the films grown on Sapphire (0001) is better than on Si (100). The variation of strain behavior due to thickness on both substrates has been justified by UV‐Vis reflectance, photoluminescence and Hall effect measurements. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Nitrogen-doped ZnO films were deposited on silicon (1 0 0) substrate using zinc acetate and ammonium acetate aqueous solution as precursors by ultrasonic spray pyrolysis. Successful p-type doping can be realized at optimized substrate temperature. The p-type ZnO films show excellent electrical properties such as hole concentration of 1018 cm−3, hole mobility of 102 cm2 V−1 s−1 and resistivity of 10−2 Ω cm. In the photoluminescence measurement, a strong near-band-edge emission was observed, while the deep-level emission was almost undetectable in both undoped and N-doped ZnO films. The growth and doping mechanism of N-doped ZnO films were discussed.  相似文献   

5.
Manganese sulphide (MnS) thin films have been deposited onto glass substrate by a low cost spray‐pyrolysis technique at 220 °C. The as‐deposited MnS thin films have been characterized using scanning electron microscopy (SEM), energy dispersive X‐ray (EDX) spectroscopy, atomic force microscopy (AFM), X‐ray diffraction, UV visible spectroscopy and photo electrochemical (PEC) measurement. The SEM and AFM images showed that the MnS thin films were well covered onto the substrate surface. The as‐deposited raw thin film was found to be amorphous in nature and perfectly crystalline phase after annealing the sample. Optical band gap of the MnS thin films was found to vary from 3.1 to 3.21 eV and the band gap decreases with the increase in film thickness. Optical constants such as refractive index, extinction coefficient have been evaluated using reflectance and absorbance data. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Ag-doped ZnO (ZnO:Ag) thin films were deposited on quartz substrates by radio frequency magnetron sputtering technique. The influence of oxygen/argon ratio on structural, electrical and optical properties of ZnO:Ag films has been investigated. ZnO:Ag films gradually transform from n-type into p-type conductivity with increasing oxygen/argon ratio. X-ray photoelectron spectroscopy measurement indicates that Ag substitutes Zn site (AgZn) in the ZnO:Ag films, acting as acceptor, and being responsible for the formation of p-type conductivity. The presence of p-type ZnO:Ag under O-rich condition is attributed to the depression of the donor defects and low formation energy of AgZn acceptor. The I–V curve of the p-ZnO:Ag/n-ZnO homojunction shows a rectification characteristic with a turn-on voltage of ∼7 V.  相似文献   

7.
The structural, electrical and optical properties of AgGa(Se0.5S0.5 )2 thin films deposited by using the thermal evaporation method have been investigated as a function of annealing in the temperature range of 450–600 °C. X‐ray diffraction (XRD) analysis showed that the structural transformation from amorphous to polycrystalline structure started at 450 oC with mixed binary phases of Ga2Se3, Ga2S3, ternary phase of AgGaS2 and single phase of S. The compositional analysis with the energy dispersive X‐ray analysis (EDXA) revealed that the as‐grown film has different elemental composition with the percentage values of Ag, Ga, Se and S being 5.58, 27.76, 13.84 and 52.82 % than the evaporation source powder, and the detailed information about the stoichometry and the segregation mechanisms of the constituent elements in the structure have been obtained. The optical band gap values as a function of annealing temperature were calculated as 2.68, 2.85, 2.82, 2.83, and 2.81 eV for as‐grown, annealed at 450, 500, 550, and 600 °C samples, respectively. It was determined that these changes in the band gap are related with the structural changes with annealing. The temperature dependent conductivity measurements were carried out in the temperature range of 250‐430 K for all samples. The room temperature resistivity value of as‐grown film was found to be 0.7x108 (Ω‐cm) and reduced to 0.9x107 (Ω‐cm) following to the annealing. From the variation of electrical conductivity as a function of the ambient temperature, the activation energies at specific temperature intervals for each sample were evaluated. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
ZnTe thin films were deposited onto well‐cleaned glass substrates kept at different temperatures (Ts = 303, 373 and 423 K), by vacuum evaporation method under the pressure of 10–5 Torr. The thickness of the film was measured by quartz crystal monitor and verified by the multiple beam interferometer method. The structural characterization was made using X‐ray diffractometer with filtered CuKα radiation. The grain sizes of the microcrystallines in films increases with increase in substrate temperature. The strain (ε), grain size (D) and dislocation density (δ) was calculated and results are discussed based on substrate temperature. Optical behaviour of the film was analyzed from transmittance spectra in the visible region (400–800 nm). The optical transition in ZnTe films is direct and allowed type. The optical band gap energy shows an inverse dependence on substrate temperature and thickness. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Thin films of tin selenide (SnSe) were deposited on sodalime glass substrates, which were held at different temperatures in the range of 350‐550 K, from the pulverized compound material using thermal evaporation method. The effect of substrate temperature (Ts) on the structural, morphological, optical, and electrical properties of the films were investigated using x‐ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission measurements, and Hall‐effect characterization techniques. The temperature dependence of the resistance of the films was also studied in the temperature range of 80‐330 K. The XRD spectra and the SEM image analyses suggest that the polycrystalline thin films having uniform distribution of grains along the (111) diffraction plane was obtained at all Ts. With the increase of Ts the intensity of the diffraction peaks increased and well‐resolved peaks at 550 K, substrate temperature, were obtained. The analysis of the data of the optical transmission spectra suggests that the films had energy band gap in the range of 1.38‐1.18 eV. Hall‐effect measurements revealed the resistivity of films in the range 112‐20 Ω cm for films deposited at different Ts. The activation energy for films deposited at different Ts was in the range of 0.14 eV‐0.28 eV as derived from the analysis of the data of low‐temperature resistivity measurements. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Al‐doped ZnO nanoparticle thin films were prepared on glass substrate at the optimum temperature of (410±10) °C by spray pyrolysis technique using zinc nitrate as a precursor solution and aluminium chloride as a dopant. The dopant concentration (Al/Zn at%) was varied from 0 to 2 at%. Structural analysis of the films shows that all the films are of polycrystalline zinc oxide in nature, possessing hexagonal wurtzite structure. The films exhibit variation in peak intensities corresponding to (100), (002) and (101) reflection planes on Al‐doping. The crystallite size calculated by Scherrer formula has been found to be in the range of 35‐65 nm. The optical absorption study shows that the optical band gap in the Al‐doped films varies in the range of 3.11 – 3.22 eV. The width of localized states in the band gap estimated by the Urbach tail analysis has been found to be minimum in case of the 1 at% Al‐doped zinc oxide thin film. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
本文主要讨论了采用改进的超声雾化设备制备了不同衬底温度条件下的ZnO 薄膜.研究了该系统下不同衬底温度对ZnO薄膜电学、结构特性的影响.霍耳测试结果表明:获得了p型ZnO薄膜,其载流子浓度高达1.30×1019cm- 3 .样品的X射线衍射和场发射扫描电子显微镜的测试结果显示,在该系统下450℃时薄膜结晶性能最佳.  相似文献   

12.
ZnO thin films with different Mg doping contents (0%, 3%, 5%, 8%, 10%, respectively) were prepared on quartz glass substrates by a modified Pechini method. XRD patterns reveal that all the thin films possess a polycrystalline hexagonal wurtzite structure. The peak position of (002) plane for Mg‐doped ZnO thin films shifts toward higher angle due to the Mg doping. The crystallite size calculated by Debey‐Scherrer formula is in the range of 32.95–48.92 nm. The SEM images show that Mg‐doped ZnO thin films are composed of dense nanoparticles, and the thickness of Mg‐doped ZnO thin films with Mg doped at 8% is around 140 nm. The transmittance spectra indicate that Mg doping can increase the optical bandgap of ZnO thin films. The band gap is tailored from 3.36 eV to 3.66 eV by changing Mg doping concentration between 3% and 10%. The photoluminescence spectra show that the ultraviolet emission peak of Mg‐doped ZnO thin films shifts toward lower wavelength as Mg doping content increases from 3% to 8%. The green emission peak of Mg‐doped ZnO thin films with Mg doping contents were 3%, 8%, and 10% is attributed to the oxygen vacancies or donor‐acceptor pair. These results prove that Mg‐doped ZnO thin films based on a modified Pechini method have the potential applications in the optoelectronic devices.  相似文献   

13.
Nanostructured titanium dioxide thin films were prepared using reactive pulsed laser ablation technique. Effects of annealing on the structural, morphological, electrical and optical properties are discussed. The structural, electrical and optical properties of TiO2 films are found to be sensitive to annealing temperature and are described with GIXRD, SEM, AFM, UV‐Visible spectroscopy and electrical studies. X‐ray diffraction studies showed that the as‐deposited films were amorphous and at first changed to anatase and then to rutile phase with increase of annealing temperature. Optical constants of these films were derived from the transmission spectra and the refractive index dispersion of the films, subjected to annealing at different temperatures, is discussed in terms of the single oscillator‐Wemple and Didomenico model. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Aluminum‐doped zinc oxide (AZO) thin films were deposited on sapphire (002) and glass substrates by two different sputtering techniques radio frequency magnetron cosputtering of AZO and ZnO targets and sputtering of an AZO target. The dependence of the photoluminescence (PL) and transmittance properties of the AZO films deposited by cosputtering and sputtering on the AZO/ZnO target power ratio, R and the O2/Ar flow ratio, r were investigated, respectively. Only a deep level emission peak appears in the PL spectra of cosputtered AZO films whereas both UV emission and deep level emission peaks are observed in the PL spectra of sputtered AZO films. The absorption edges in the transmittance spectra of the AZO films shift to the lower wavelength region as R and r increase. Also effects of crystallinity, surface roughness, PL on the transmittance of the AZO films were explained using the X‐ray diffraction (XRD), atomic force microscopy (AFM), and PL analysis results. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Optical properties of spray deposited antimony (Sb) doped tin oxide (SnO2) thin films, prepared from SnCl2 precursor, have been studied as a function of antimony doping concentration. The doping concentration was varied from 0‐4 wt.% of Sb. All the films were deposited on microscope glass slides at the optimized substrate temperature of 400 °C. The films are polycrystalline in nature with tetragonal crystal structure. The doped films are degenerate and n‐type conducting. The sheet resistance of tin oxide films was found to decrease from 38.22 Ω/□ for undoped films to 2.17 Ω/□ for antimony doped films. The lowest sheet resistance was achieved for 2 wt.% of Sb doping. To the best of our knowledge, this sheet resistance value is the lowest reported so far, for Sb doped films prepared from SnCl2 precursor. The transmittance and reflectance spectra for the as‐deposited films were recorded in the wavelength range of 300 to 2500 nm. The transmittance of the films was observed to increase from 42 % to 55 % (at 800 nm) on initial addition of Sb and then it is decreased for higher level of antimony doping. This paper investigates the variation of optical and electrical properties of the as‐deposited films with Sb doping. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Non-doped and lithium doped nickel oxide crystalline films have been prepared onto quartz and crystalline alumina substrates at high substrate temperature (600 °C) by the pneumatic spray pyrolysis process using nickel and lithium acetates as source materials. The structure of all the deposited films was the crystalline cubic phase related to NiO, although this crystalline structure was a little bit stressed for the films with higher lithium concentration. The grain size had values between 60 and 70 nm, almost independently of doping concentration. The non-doped and lithium doped films have an energy band gap of the order of 3.6 eV. Hot point probe results show that all deposited films have a p-type semiconductor behavior. From current–voltage measurements it was observed that the electrical resistivity decreases as the lithium concentration increases, indicating that the doping action of lithium is carried out. The electrical resistivity changed from 106 Ω cm for the non-doped films up to 102 Ω cm for the films prepared with the highest doping concentration.  相似文献   

17.
Effects of substrate temperature and atmosphere on the electrical and optical properties of Ga‐doped ZnO thin films deposited by rf magnetron sputtering were investigated. The electrical resistivity of Ga‐doped ZnO (GZO) films decreases as the substrate temperature increases from room temperature to 300°C. A minimum resistivity of 3.3 × 10–4 Ω cm is obtained at 300°C and then the resistivity increases with a further increase in the substrate temperature to 400°C. This change in resistivity with the substrate temperature is related to the crystallinity of the GZO film. The resistivity nearly does not change with the O2/Ar flow ratio, R for R < 0.25 but increases rapidly with R for R > 0.25. This change in resistivity with R is also related to crystallinity. The crystallinity is enhanced as R increases, but if the oxygen partial pressure is higher than a certain level (R = 0.25 ± 0.10) gallium oxides precipitate at grain boundaries, which decrease both carrier concentration and mobility. Optical transmittance increases as R increases for R < 0.75. This change in transmittance with R is related to changes in oxygen vacancy concentration and surface roughness with R. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Thin films of Sb2Te2Se were prepared by conventional thermal evaporation of the presynthesized material on Corning glass substrates. The chemical composition of the samples was determined by means of energy‐dispersive X‐ray spectrometry. X‐ray diffraction studies on the as‐deposited and annealed films revealed an amorphous‐to‐crystalline phase transition. The as‐deposited and annealed films at T a = 323 and 373 K are amorphous, while those annealed at T a= 423 and 473 K are crystalline with a single‐phase of a rhombohedral crystalline structure as that of the source material. The unit‐cell lattice parameters were determined and compared with the reported data. The optical constants (n , k ) of the investigated films were determined from the transmittance and reflectance data at normal incidence in the spectral range 400–2500 nm. The analysis of the absorption spectra revealed non‐direct energy gaps, characterizing the amorphous films, while the crystalline films exhibited direct energy gaps. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The aim of this study depends on understanding the effect of target‐to‐substrate distance (DTS) on ZnO thin films deposited by r.f. magnetron sputtering on to glass substrates at room temperature conditions. The DTS was changed from 35 mm to 65 mm with steps of 5 mm at 165 W and 0.2 Pa. The deposition rate of the films were ranged from 76 Ǻ / min to 146 Ǻ / min, while 10‐3 Ω.cm was obtained as the resistivity value with the help of four point probe technique. The structural investigations were carried out by using both the x‐ray diffraction (XRD) and high resolution transmission electron microscopy. According to XRD observations, the films were (002) oriented. Surface behaviour of the ZnO films was examined with atomic force microscopy and scanning electron microscopy. The root mean square (RMS) values were varied from 4.6 nm to 22.8 nm. Also, optical properties were obtained from UV–visible spectrophotometer and the transmittances as around 80 %. At 45 mm DTS value, the minimum resistivity measured as 9 × 10− 4 Ω.cm with 76 Ǻ / min deposition rate. The RMS was obtained as 4.9 nm and transmission was measured as 85.30 %, while band gap was 3.45 eV.  相似文献   

20.
We have studied the effect of subsequent gamma (γ) irradiation on the absorption spectra and the optical energy gap of ZnO thin films doped with Li (ZnO:Li). The optical transmission (T) and optical reflection (R) in the wavelength range 190∼800 nm of films deposited at 300 °C on sapphire, MgO or quartz substrates were measured. The dependence of the absorption coefficient α on photon energy hν was determined as a function of γ‐doses. The films show direct allowed interband transition that influenced by the gamma doses. Both the optical energy gap Eoptg and the absorption coefficient (α) were found to be γ‐dose dependent. The results can be discussed on the basis of γ‐irradiation‐induced defects in the film and on the film structure. The absorption coefficient exhibits exponential dependence on photon energy obeying Urbach's rule in the absorption edge. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号