首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FT‐IR and FT‐Raman spectra of methyl(2‐methyl‐4,6–dinitrophenylsulfanyl)ethanoate (MDIE) were recorded and analyzed. Surface‐enhanced Raman scattering (SERS) spectra were recorded in silver colloid and silver electrode. The vibrational wavenumbers were computed using HF/6‐31G* and B3LYP/6‐31G* basis. The data obtained from vibrational wavenumber calculations are used to assign vibrational bands obtained in infrared and Raman spectroscopies as well as in SERS of the studied molecule. The first hyperpolarizability and infrared intensities are reported. The geometrical parameters of the title compound are in agreement with the reported similar derivatives. The presence of new bands at 1045 and 948 cm−1 in the SERS spectrum in silver electrode is related to the change in orientation of the molecule with respect to the metal surface. In silver colloid SERS spectrum, the methyl group attached to the methoxy carbonyl group is close to the metal surface, whereas on silver electrode the methyl group attached to the phenyl ring is close to the metal surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
As an infrared Raman probe, the molecule 3,3′‐diethylthiatricarbocyanine iodide (DTTC) has received much attention in the past decades due to its potential applications in Raman imaging, single‐cell detection, cancer diagnosis, and surface‐enhanced Raman scattering (SERS). In this work, ordinary Raman, SERS, and theoretical Raman spectra were investigated to estimate the DTTC suspension. More specifically, the original gold nanospheres (60 nm diameter) and gold nanorods were encoded with DTTC and stabilized with a layer of thiol–polyethylene glycol as Raman reporter; SERS data were also obtained from the samples. Hartree–Fock theory and density functional theory (DFT) calculation were applied to calculate the optimized Raman spectra of DTTC in water on the B3LYP/6‐31G level. Subsequently, the obtained experimental spectra from DTTC were carefully compared with the theoretically calculated spectra, and good agreement was obtained between the theoretical and experimental results.The bands between 500 and 3100 cm−1 in the ordinary Raman and SERS spectra were assigned as well. This work will facilitate the development of ultrasensitive SERS probes for advanced biomedical imaging applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Surface‐enhanced Raman scattering (SERS) spectra of 2‐amino‐5‐nitropyridine (ANP) adsorbed on colloidal silver triangular nanoplates were obtained using samples with different mean sizes and surface plasmon frequencies. The relative SERS enhancement factor for each sample was determined by the analysis of the normalized SERS excitation profiles of ANP vibrational modes for nanoplates in suspension, without aggregation. The SERS profiles are blue‐shifted in relation to the localized surface plasmon peak. The detailed characterization of both morphology and concentration of the samples in addition to a rigorous normalization of the SERS spectra allowed a quantitative correlation between the SERS profiles and the mean size of the nanoplates. This correlation indicated the existence of an optimum size of the nanoplates for maximum Raman enhancement. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
IR, Raman and surface‐enhanced Raman scattering (SERS) spectra of 5‐sulphosalicylic acid were recorded and analysed. The vibrational wavenumbers were computed by density functional theoretical (DFT) method using B3LYP/6–31G* basis. The bands due to the stretching modes CO, C S and SO2 are intense in the SERS spectrum. The C H stretching mode also appears in the SERS spectrum. The molecule is found to adsorb through both the carboxyl and sulphonyl groups. A possible tilted orientation of the molecule is suggested. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The solid phase Fourier transform infrared (FTIR) and Fourier transform (FT) Raman spectral analysis of 7‐chloro‐3‐methyl‐2H‐1,2,4‐benzothiadiazine 1,1‐dioxide (diazoxide), an antihypertensive agent was carried out along with density functional computations. The optimized geometry, wavenumber and intensity of the vibrational bands of diazoxide were obtained by DFT‐B3LYP level of theory with complete relaxation in the potential energy surface using 6‐31G(d,p) basis set. A complete vibrational assignment aided by the theoretical harmonic frequency analysis has been proposed. The harmonic vibrational wavenumbers calculated have been compared with experimental FTIR and FT Raman spectra. The observed and the calculated wavenumbers are found to be in good agreement. The experimental spectra coincide satisfactorily with those of calculated spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐ethyl‐N‐(2′‐hydroxy‐5′‐nitrophenyl)benzamide were recorded and analyzed. A surface‐enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared spectrum from the computational wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO stretching mode gives the charge transfer interaction through a π‐conjugated path. The presence of methyl modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface, which affects the orientation and metal molecule interaction. The first hyperpolarizability and predicted infrared intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive subject for future studies of nonlinear optics. Optimized geometrical parameters of the title compound are in agreement with reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Silver thiolate is a layered compound with a Raman spectrum that is known to change with time, becoming the same as the surface‐enhanced Raman scattering (SERS) spectrum of the parent thiol molecule adsorbed on Ag nanoparticles. On this basis, the Raman scattering characteristics of silver 4‐aminobenzenethiolate (Ag‐4ABT) compounds were investigated to determine whether certain peaks that are identifiable in the SERS spectrum of 4‐aminobenzenethiol (4‐ABT) but absent in its normal Raman spectrum were also apparent in the Ag salt spectrum. For comparative purposes, the Raman scattering characteristics of silver 4‐dimethylaminobenzenethiolate (Ag‐4MABT) were also examined. Raman spectra acquired while spinning the sample were typified by only a1‐type vibrational bands of Ag‐4ABT and Ag‐4MABT, whereas in the static condition, several non‐a1‐type bands were identified. The spectral patterns acquired in the static condition were similar to the intrinsic SERS spectra of 4‐ABT or 4‐dimethylaminobenzenethiol (4‐MABT) adsorbed on pure Ag nanoparticles. Notably, the CH3 group vibrational bands were observable for Ag‐4MABT irrespective of the sample rotation. In addition, no decrease in intensity during irradiation with a visible laser was observed for any of the bands, suggesting that no chemical conversion actually took place in either 4‐ABT or 4‐MABT. The preponderance of evidence led to the conclusion that the non‐a1‐type bands observable in the SERS spectra must be associated with the chemical enhancement mechanism acting on the Ag nanoparticles. The chemical enhancement effect was more profound at 514.5 nm than at 632.8 nm, and was more favorable for 4‐ABT than 4‐MABT at both wavelengths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Raman and surface‐enhanced Raman scattering (SERS) spectra of dapsone by using colloidal silver nanoparticles have been recorded. Density functional theory was used for the optimization of ground state geometries and simulation of the vibrational spectrum of this molecule. The SERS spectrum with a large silver cluster as a model metallic surface was simulated for the first time. Taking into account the experimental and calculated Raman as well as the SERS normal modes and the corresponding assignments, along with the modeling of the free dapsone and the one in the presence of the colloidal silver nanoparticles, the importance of the sulfone group on the SERS effect in dapsone was inferred. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Local pH environment has been considered to be a potential biomarker for tumor diagnosis because solid tumors contain highly acidic environments. A pH‐sensing nanoprobe based on surface‐enhanced Raman scattering (SERS) using nanostars under near‐infrared excitation has been developed for potential biomedical applications. To theoretically investigate the effect of protonation state on SERS spectra of p‐mercaptobenzoic acid (pMBA), we used the density functional theory (DFT) with the B3LYP functional to calculate Raman vibrational spectra of pMBA‐Au/Ag complex in both protonated and deprotonated states. Vibrational spectral bands were assigned with DFT calculation and used to investigate SERS spectral changes observed from experiment when varying pH value between five and nine. The SERS peak position of pMBA at ~1580 cm−1 was identified to be a novel pH‐sensing index, which has small but noticeable downshift with pH increase. This phenomenon is confirmed and well‐explained with theoretical simulation. The study demonstrates that SERS is a sensitive tool to monitor minor structural changes due to local pH environment, and DFT calculations can be used to investigate Raman spectra changes associated with minor differences in molecular structure. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This work deals with the vibrational spectroscopy of 2‐amino‐4,6‐dihydroxy pyrimidine (ADHP) by means of quantum chemical calculations. The mid‐ and far FTIR and FT‐Raman spectra were measured in the condensed state. The fundamental vibrational wavenumbers and intensity of vibrational bands were evaluated using density functional theory (DFT) with the standard B3LYP/6‐311 + G** methods and basis set combinations, and were scaled using various scale factors, which yielded good agreement between the observed and calculated wavenumbers. The vibrational spectra were interpreted with the aid of normal coordinate analysis based on the scaled density functional force field. The results of the calculations were applied to simulate the infrared and Raman spectra of the title compound, which showed excellent agreement with the observed spectra. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The substituent effect on structure and surface activity of mono‐ and disubstituted N‐methylpyridinium salts was investigated by means of Raman, infrared and surface‐enhanced Raman spectroscopy (SERS). The significant differences observed in Raman and infrared spectra have been correlated with marker bands assigned to in‐plane and out‐of‐plane vibrations, respectively. This vibrational analysis, complemented by quantum chemical calculations (B3LYP/6‐311++G(d,p)) was a basis for investigation of the surface activity of the studied compounds. Significant differences in their SERS spectra related to the enhancement mechanism and adsorbate orientation have been observed and analyzed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Aptamers are single‐stranded oligonucleotides that selectively bind to their target molecules owing to their ability to form secondary structures and shapes. The 15‐mer (5′‐GGTTGGTGTGGTTGG‐3′) DNA thrombin‐binding aptamer (TBA) binds to thrombin following the formation of a quadruplex structure via the Hoogsten‐type G–G interactions. In the present study, Raman and SERS spectra of TBA and thiolated TBA (used to facilitate covalent bonding to metal nanoparticle) in different conditions are investigated. The spectra of the two analogs exhibit vibrations, such as the C8N7 H2 deformation band at ∼1480 cm−1 of the guanine tetrad, that are characteristic of the quadruplex structure in the presence of K+ ions or at low temperature. Interestingly, SERS spectra of the two analogs differ markedly from their respective normal Raman spectra, possibly due to changes in the conformation of the aptamer upon binding, as well as to the specific interaction of individual vibrational modes with the metal surface. In addition, the SERS spectra of the thiolated aptamer show significant changes with different concentrations, which may be due to different orientation of the molecule with respect to the metal surface. This study provides useful information for the development of label‐free aptamer‐based SERS sensors and assays. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
IR, Raman and surface enhanced Raman scattering (SERS) spectra of 3,5‐dinitrosalicylic acid (DNSA) were recorded and analysed. The vibrational wavenumbers were computed by the ab initio method using RHF/6–21G* basis and they were found to be in good agreement with the experimental values. The effect of the concentration dependence on the SERS intensity of the molecule was studied. The molecular plane assumes a tilted orientation with respect to the silver surface. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
We report the observation of large surface‐enhanced Raman scattering (SERS) (106) for 4‐tert‐butylpyridine molecules adsorbed on a silver electrode surface in an electrochemical cell with electrode potential set at − 0.5 V. A decrease in electrode potential to − 0.3 V was accompanied by a decrease in relative intensities of the vibrational modes. However, there were no changes in vibrational wavenumbers. Comparison of both normal solution Raman and SERS spectra shows very large enhancement of the intensities of a1, a2, and b2 modes at laser excitation of 488 nm. Enhancement of the non‐totally symmetric modes indicates the presence of charge transfer as a contributor to the enhancement. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The substrate‐dependent surface‐enhanced Raman scattering (SERS) of 4‐aminobenzenethiol (4‐ABT) adsorbed on Au surfaces has been investigated. 4‐ABT is one of the very unique adsorbate molecules whose SERS spectral patterns are known to be noticeably dependent on the relative contribution of chemical enhancement mechanism vs electromagnetic enhancement mechanism. The SERS spectral patterns of 4‐ABT adsorbed on gold substrates with various surface morphology have thus been analyzed in terms of the symmetry types of the vibrational modes. Almost invisibly weak b2 type vibrational bands were observed in the SERS spectra of the 4‐ABT adsorbed on Au colloidal sol nanoparticles or commercially available Au micro‐powders because of the weak contribution of the chemical enhancement. However, greatly enhanced b2 vibrational bands were observed in the spectra of the 4‐ABT molecules adsorbed on the synthesized Au(Zn) sponge or the electrochemically roughened Au(ORC) foil caused by the strong contribution of the chemical enhancement mechanism. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Raman scattering and surface‐enhanced Raman scattering (SERS) have been used to study the behavior of 4‐mercaptopyridine (4‐Mpy) dissolved in water and adsorbed on silver mirrors. In order to gain the actual structure and the theoretical modes of the 4‐Mpy dissolved in water and adsorbed on the surface of silver mirror, ab initio calculation at the Hartree–Fock (HF) level and density functional theory (DFT) at Beck's three‐parameter Lee‐Yang‐Parr (B3LYP) level were performed to calculate the vibrational modes and wavenumbers. 4‐Mpy/2H2O and 4‐Mpy/Ag complex systems were optimized, and then the corresponding Raman spectra were calculated and analyzed. Compared with the experimental results, the calculated results of 4‐Mpy and 4‐Mpy/2H2O complex systems obtained from DFT method were more accurate. Among the results calculated with HF method, the one with three Ag atoms was economical, which took less computer time but gave equivalent results to those with more noumber of Ag atoms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The pH‐dependent surface‐enhanced Raman scattering (SERS) of 1,2,4‐triazole adsorbed on silver electrode and normal Raman (NR) spectra of this compound in the aqueous solutions were investigated. The observed bands in the NR and SERS spectra were assigned with the help of density functional theory calculations for model molecules in the neutral, anionic, and cationic forms and their complexes with silver. The Raman wavenumbers and intensities were computed at the optimized molecular geometry. Vibrational assignments of the SERS and NR spectra are provided by calculated potential energy distributions. The combination of experimental SERS results and density functional theory calculations provide an insight into the molecular structure of adlayers formed by 1,2,4‐triazole on a silver surface at varying pH values and enable the determination of molecular orientation with respect to the surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, surface‐enhanced Raman scattering (SERS) spectra of 6‐propylthiouracil (6‐PTU) on Au surface and the interaction between 6‐PTU and human serum albumin (HSA) were studied. The Raman bands were assigned by the density functional theory calculations at the B3LYP/6‐311++g(d,p) level. Furthermore, the effects of concentration on the SERS spectra of 6‐PTU were analyzed. It shows that with the changes of the concentrations of 6‐PTU, the SERS spectra of 6‐PTU present significant changes, and it can be concluded that with the changing of concentrations, the orientation of 6‐PTU on Au surface also changes. In addition, the SERS spectra of the interaction between 6‐PTU and HSA show that the binding sites of 6‐PTU to HSA are the functional groups N3H and CO. The information will not only be references to the study of the mechanism of the interaction between drugs and blood plasma or serum albumin but also a guidance to understand the metabolism of drugs in human body. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, experimental and theoretical vibrational spectral results of the molecular structures of 6,8‐dichloroflavone (6,8‐dcf) and 6,8‐dibromoflavone (6,8‐dbf) are presented. The FT‐IR and FT‐Raman spectra of the compounds have been recorded together between 4000 and 400 cm−1 and 3500–5 cm−1 regions, respectively. The molecular geometry and vibrational wavenumbers of 6,8‐dcf and 6,8‐dbf in their ground state have been calculated by using DFT/B3LYP functional, with 6‐31 + + G(d,p) basis set used in calculations. All calculations were performed with Gaussian03 software. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. Scale factors have been used in order to compare how the calculated and experimental data are in agreement. Theoretical infrared intensities are also reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Experimental vibrational spectroscopic studies and density functional theory (DFT) calculations of the di‐amino acid peptide derivatives α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu have been undertaken. Raman and infrared spectra have been recorded for samples in the solid state. DFT simulations were conducted using the B3‐LYP correlation functional and the cc‐pVDZ basis set to determine energy minimized/geometry optimized structures (based on a single isolated molecule in the gaseous state). Normal coordinate calculations have provided vibrational assignments for fundamental modes, including their potential energy distributions. Significant differences are observed between α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu both in the computed structures and in the vibrational spectra. The combination of experimental and calculated spectra provide an insight into the structural and vibrational spectroscopic properties of di‐amino acid peptide derivatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号