首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Codoped Hf: Er: LiNbO3 crystals have been grown by the Czochralski technique. Defect structures of the crystals were analyzed by IR absorption spectra, and the compositions of the crystals were measured by X‐ray fluorescent spectrograph. A new OH‐associated vibrational peak at 3492 cm–1 was revealed in 6 mol % Hf: 1 mol % Er: LiNbO3 crystal. It was attributed to (HfNb)‐OH‐(ErNb)2– defect centers. The Er3+ concentrations in crystals gradually decreased with the increase of the codoped Hf4+ concentrations in the melts. The emission characteristics of the crystals were investigated by the fluorescence spectrum. It was found that the luminescent intensity in codoped 6 mol % Hf: 1 mol % Er: LiNbO3 crystal was 3.5 times stronger than that in single doped 1 mol % Er: LiNbO3 crystal. The luminescent enhancement effect was successfully explained on the basis of defect structure of the crystals. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The effects of Er3+ doping concentration and calcination were examined on the fluorescence properties of La3Ga5.5Nb0.5O14 (Er:LGN) nanoparticles for the first time. High quality Er:LGN nanoparticles were synthesized by sol‐gel method. The room temperature fluorescence spectra showed a green emission, which can be attributed to 2H11/24I15/2 and 4S3/24I15/2 transition. The relationship between the relative emission intensity and the doping concentration was investigated. The maximum of the Er3+ doping concentration in LGN nanopowders is 2.0%. The fluorescent lifetime of 2.0% Er:LGN nanoparticles is 1.45ns. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Erbium doped LiNbO3 (Er:LiNbO3) single crystal fibers were grown free of cracks along c‐axis by the micro‐pulling down (μ‐PD) method. We have investigated the up‐conversion property with the change of doped Er2O3 concentration and the starting melt composition. An enhancement of green upconversion according host matrix is also observed the stoichiometric LiNbO3. And, the dependence of the green emission according to Er3+ concentration is analyzed. The possible application of the Er3+ doped stoichiometric LiNbO3 single crystal fiber for up‐conversion based optical devices is discussed.  相似文献   

4.
In this paper we investigate the energy transfer processes in Tm3+/Er3+ doped telluride glass pumped at the commercial diode laser pump wavelength ∼800 nm. Tailoring the rare-earths content in the glass matrix, seven main energy transfer channels within the doping range considered were identified. A 6-fold enhancement of the Er3+ visible frequency upconversion fluorescence at ∼660 nm is observed due to the inclusion of Tm3+ ions. This is evidence of the relevant contribution of the route Er1(4I11/2) + Er2(4I13/2) → Er1(4I15/2) + Er2(4F9/2) to the process. Energy migration among pumped 4I9/2 level reducing the efficiency of the upconversion emission rate (3H11/2, 4S3/2, and 4F9/2) is observed for Er3+ above 1.5 wt%. The rate equations regarding the observed energy transfer routes are determined and a qualitative analysis of the observed processes is reported.  相似文献   

5.
The effect of Yb3+ concentration on the fluorescence of 12CaO·7 Al2O3:Ho3+/Yb3+ polycrystals is investigated. The Raman spectra of pure C12A7 under 633‐nm excitation show that the highest photon energy is 787.267 cm−1, which is not much bigger than general fluorides, so it can realize high efficiency upconversion. The upconversion emission spectra suggest that the green upconversion emission centered at 548 nm and the red upconversion emission at 662 nm correspond to the 5F4/5S25I8 and 5F55I8 transition of Ho3+ ions, respectively. The intensity of the upconversion luminescence and the ratio of red to green are changed with Yb3+ ion concentration. The pump dependence and luminescence decay dynamics spectra show the green and red upconversion emissions are populated by a two‐photon process, and the upconversion mechanisms are analyzed. The relative luminous efficiencies of green and red emissions are 2.035% and 0.7%, respectively. The normalized efficiency obtained for green emission of Ho3+ at RT when the sample is excited by 980‐nm light with an absorbed intensity of 7.5 W/cm2 is 0.27 cm2/W. This result is comparable to the values obtained in YF3 for the Yb3+, Er3+ green emission. The C12A7 with upconversion red and green light will be a promising luminous material.  相似文献   

6.
The upconversion properties of Er3+ ions were studied for heavy metal oxyfluoride tellurite glass hosts xPbF2-(100−x)TeO2 under 975 nm excitation. The intense green (529 and 545 nm) and relative weak red (657 nm) emissions corresponding to the transitions 4S3/2 → 4I15/2, 2H11/2 → 4I15/2 and 4F9/2 → 4I15/2, respectively, were simultaneously observed at room temperature. The PbF2 content has an important influence on upconversion luminescence emission. With increasing PbF2 content, the intensities of green (529 nm) and red (657 nm) emissions increase slightly, while the green (545 nm) emission increases significantly. These results indicate that PbF2 has more influence on the green (545 nm) emission than the green (529 nm) and red (657 nm) emissions. The intense green emission observed suggest that Er3+-doped heavy metal oxyfluoride tellurite glasses can become candidates for developing upconversion optical devices.  相似文献   

7.
The excitation mechanism of photo- (PL) and electroluminescence (EL) of erbium ions co-implanted with ytterbium into the SiO2 layer of light emitting MOS devices (MOSLED) was investigated. Ytterbium implanted and annealed samples exhibit the blue and near infrared electroluminescence. The blue electroluminescence at 470 nm appears due to cooperative up-conversion emission in the Yb3+-Yb3+ system, and the near infrared EL at 975 and 1025 nm corresponds to transitions from the multiple state 2F5/2 to the 2F7/2 ground state in the Yb3+ ions. The Er implanted SiO2 exhibits the luminescence in the blue-green and infrared region. The green and blue peaks correspond to radiative transitions from the 2H11/2 or 4S3/2 energy levels and from the 2H9/2 or 4F5/2 energy levels to the 4I15/2 ground state, respectively. We have found that the energy transfer from Yb3+ to Er3+ ions exists only during photoluminescence excitation. The electroluminescence investigation shows the cooperative up-conversion in the Er3+-Yb3+ system.  相似文献   

8.
Bi–Er–Tm co-doped germanate glasses and Bi, Er, Tm singly doped glasses were prepared and characterized through absorption spectra, NIR emission spectra and decay lifetime. A super broadband near-infrared emission from 1000 nm to 1600 nm, covering the whole O, E, S, C, and L bands, was observed in the Bi–Er–Tm co-doped samples due to the result of the overlapping of the Bi related emission band (centered at 1300 nm), the emission from Er3+ 4I13/2  4I15/2 transition (centered at 1534 nm) as well as the emission from Tm3+ 3H4  3F4 transition (centered at 1440 nm), which is essential for broadly tunable laser sources and broadband optical amplifiers. The energy transfer process was also discussed at the end of the paper.  相似文献   

9.
Er2O3-doped Bi2O3-B2O3-Ga2O3 glasses were prepared by the conventional melt-quenching method, and the Er3+:4I13/2 → 4I15/2 fluorescence properties are studied for different Er3+ concentrations. when the Er2O3 concentration increases from 0.03 to 3.0 mol%, the measured lifetime of Er3+:4I13/2 level decrease from 2.24 to 0.9 m s, and from 0.25 to 0.20 m s for the Er3+:4I11/2 level. The fast energy migration among Er3+ ions cause the reduction of lifetime of the 4I13/2 level, whereas the change in the 4I11/2 level is mainly due to a cooperative upconversion process (4I11/24I11/2) → (4F7/24I15/2). Based on the dipole-dipole interaction theory, the interaction parameter, CEr,Er, for the migration rate of Er3+:4I13/2 ↔ 4I13/2 was calculated to be 32 × 10−40 cm6 s−1.  相似文献   

10.
《Journal of Non》2007,353(13-15):1330-1332
We have studied the absorption and photoluminescence (PL) of (GeS2)80(Ga2S3)20 glasses doped with 0.17, 0.35 and 1.05 at.% Er. The sharp bands centered at around 660, 810, 980 and 1540 nm in the absorption spectra can be associated with intra 4f-shell transitions in Er3+ ions from 4I15/2 level to 4F9/2, 4I9/2, 4I11/2 and 4I13/2 levels, respectively. It has been observed that the absorption edge shifts towards lower energies with increasing Er concentration. A decrease in the absorption coefficient in the range of weak absorption, as well as the host luminescence in more heavily doped samples has been established, which may be associated with less native defects in the glassy structure. The role of excitation wavelength (λex) on the PL emission band at 1540 nm using different Er3+-doping level has been evaluated. It has been found that the total PL band remains almost the same under direct excitation of Er3+ ions (at λex = 644, 770 and 982 nm), while it becomes narrower under the host excitation (at λex = 532 nm).  相似文献   

11.
Mg: Er: LiNbO3 crystals were grown by the Czochralski technique with various concentrations of MgO = 2 mol%, 4 mol%, 6 mol% and the fixed concentration of Er2O3= 1 mol% in the melt, and the 8 mol%Mg: 1 mol%Er: LiNbO3 crystal was fabricated by the Czochralski technique with special technology process. The crystals were treated by polarization, reduction and oxidation. The segregation coefficients of Mg2+ and Er3+ in Mg: Er: LiNbO3 crystals were measured by X‐ray fluorescence spectrograph, as well as the crystal's defect structure and optical properties were analyzed by the UV‐Vis, IR and fluorescent spectroscopy. The pump wavelength and the surge wavelength were determined. Using m‐line method tested optical damage resistance of those crystals, the results show that photodamage threshold of Mg: Er: LiNbO3 crystals are higher than that of Er: LiNbO3 crystal, and the oxidation treat could enhance the photodamage resistant ability of crystals while the reduction treat could depress the ability. The optical damage resistance of 8 mol%Mg: 1 mol%Er: LiNbO3 crystal was the strongest among the samples, which was two orders magnitude higher than that of 1 mol%Er: LiNbO3 crystal. The dependence of the optical properties on defect structure of Mg: Er: LiNbO3 crystals was discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We measured the 1.5 μm emission spectra corresponding to 4I13/2 → 4I15/2 transition of Er3+ in borosilicate glass within the temperature range from 11 to 300 K. The spectral components emitting from the lowest and upper Stark levels of 4I13/2 state were distinguished by analyzing the spectra with normalized area. The effect of optical properties of the spectral components on the 1.5 μm emission bandwidth is investigated. The results indicate that to search for a host with higher spontaneous emission probability of the upper Stark levels of 4I13/2 state for Er3+ ions is very important to broadening of the 1.5 μm emission band. An equivalent model of four-level system is presented and applied to explain the spectral shape and temperature characteristics of the 1.5 μm emission band.  相似文献   

13.
Z.G. Ivanova  J. Zavadil  K.S.R.K. Rao 《Journal of Non》2011,357(11-13):2443-2446
The influence of temperature and glass composition on the photoluminescence (PL) efficiency of Er3+ ions embedded in (GeS2)100?x(Ga2S3)x (x = 20, 25 and 33 mol%) glasses has been studied. The typical 4f–4f emission bands of Er3+ ions at around 830, 1000 and 1550 nm have been observed in the whole investigated temperature range from 300 K down to 10 K for all the compositions. New 4f–4f luminescence bands, in excess of the three basic ones, have been observed at 670, 870, 1120, 1260 and 1350 nm for (GeS2)75(Ga2S3)25 glass composition, and are tentatively assigned to 2H9/2  4I11/2, 4G11/2  4F9/2, 2H11/2  4I11/2, 4F7/2  4I9/2 and 4F3/2  4I9/2 transitions, respectively. Thus a considerable influence of GeGaS host composition on the efficiency of 4f–4f transitions of embedded Er3+ ions is documented with the outcome that (GeS2)75Ga2S3)25 composition appears near optimal for the emission efficiency of Er3+ ions. With decreasing temperature the PL efficiency is enhanced considerably with pronounced narrowing of all bands. In the case of the strongest PL band at ~ 1550 nm, corresponding to 4I13/2  4I15/2 transition, the narrowing at low temperature is further accompanied by the resolution of well pronounced fine structure due to “crystal field” splitting of corresponding electronic terms. The relationship between the photoluminescence and reflectance spectra as a function of Er content has been discussed.  相似文献   

14.
Optical absorption, luminescence excitation and emission spectra of Er3+ centres in Ca3Ga2Ge3O12:Er glass with Er content of 1.46 wt% are presented and analysed. Luminescence kinetics for the main Er3+ transitions was satisfactorily described by single exponential decays with characteristic lifetimes. Oscillator strengths, phenomenological Judd–Ofelt intensity parameters, radiative decay rates (emission probabilities of transitions), branching ratios and radiative lifetimes for Er3+ centres in Ca3Ga2Ge3O12:Er glass are calculated and compared with the corresponding parameters of the Ca3Sc2Ge3O12:Er3+ garnet and other crystals and glasses. Quantum efficiency, η, of the 4I13/2  4I15/2 Er3+ transition is determined. Incorporation peculiarities and local structure of Er3+ luminescence centres in Ca3Ga2Ge3O12:Er3+ glass are discussed in comparison with garnet crystals and oxide glasses. On the basis of the presented results and referenced EXAFS data for Er, Eu and Ho impurities (L3-edge) it has been shown that Er3+ centres in Ca3Ga2Ge3O12 glass occupy network sites with the coordination number to oxygen of N = 6.  相似文献   

15.
The Er3+doped Mg:LiNbO3single crystal fibers employed in our experiment were grown in air by a micro‐pulling down (μ‐PD) method from host materials of a congruent Li/Nb (0.945) ratio which were melt‐doped with a nominal molar concentration of 1, 3, 5% MgO and 0.6% Er2O3. The X‐ray diffraction analysis results indicated that the co‐doped crystals main tained the same structural characteristics as the undoped LiNbO3, however the lattice parameters with Mg differed; c (Å) value decreased, and a (Å) increased than of pure LiNbO3. The influence of dopants on the photoluminescence (PL) properties of the Er:Mg:LiNbO3 single crystal fibers excited by laser lines of 514 nm was reported. Also, the PL properties according to temperature and the excitation power of Er:Mg:LiNbO3 crystal fibers were analyzed.  相似文献   

16.
《Journal of Non》2007,353(13-15):1414-1417
Absorption, emission, excitation spectra and the lifetime of the 4S3/2 excited luminescent state of Er3+ ions in a fluorine containing (lead, lanthanum)–tellurite glass have been studied. The glass exhibits a strong green luminescence upon excitation through 380 nm (4I15/2  4G11/2) absorption band of its Er3+ ions. The spectrum consists of a strong green component in the wavelength range 534–553 nm due to luminescence transitions 2H11/2  4I15/2 and 4S3/2  4I15/2 and a very weak red component in the range 650–710 nm due to 4F9/2  4I15/2 transition. The Stark split components of the 4S3/2 state are not very clear in the spectrum, but the biexponential luminescence decay of the 4S3/2 state confirms the presence of the Stark levels. A rapid conversion of the upper Stark level to the lower level is also evident from the decay kinetics which helps greater number of ions to populate in the lower stark level of the 4S3/2 state. Thus, the present study indicates that the glass may be a suitable candidate for use as a laser medium in making a solid state green laser by pumping the later by normal route.  相似文献   

17.
Single crystals of Erbium (Er) doped La3Ga5SiO14 (LGS) have been grown along c‐axis by using the Czochralski method. The absorption and fluorescence spectra of LGS: Er3+ single crystals have been measured and analyzed according to the Judd‐Ofelt theory. When applied, the following spectral parameters have been obtained: intensity parameters Ωt, Ω2= 2.741674×10‐20cm2, Ω4= 0.66934×10‐20 cm2 and Ω6= 0.592591×10‐20 cm2, radiative transition probabilities AJ,J”, PJ,J”. The radiative lifetime of levels 4I13/2, 4H9/2, 4S3/2 are 11.333ms, 0.447ms and 0.704ms, respectively. The fluorescence branching ratios and the integrated emission cross sections are also calculated. The results suggest that LGS: Er crystals have potential applications as a laser material. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The optical absorption spectra of LiNbO3 (LN), Fe:LiNbO3 (Fe:LN), and Zn:Fe:LiNbO3 (Zn:Fe:LN) single crystals grown by Bridgman method were measured and compared. The absorption characteristics of the samples and the effects of growth process conditions on the absorption spectra were investigated. The Fe, Zn and Li concentrations in the crystals were analyzed by inductively coupled plasma (ICP) spectrometry. The results indicated that the overall Fe ion and Fe2+ concentration in Fe:LN and Zn:Fe:LN crystals increased along the growing direction. The incorporation of ZnO in Fe:LN crystal induced increase of Fe2+ in the crystal. Among Fe‐doped and Zn:Fe‐codoped LN single crystals, 3 mol% ZnO doped Fe:LN had a biggest change of Fe2+ ion concentration from bottom to top part of crystal. The effects of technical conditions (atmosphere and thermal history) on Fe2+ ion concentration were discussed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
《Journal of Non》2007,353(13-15):1364-1371
The optical properties of GeGaSe glasses doped with Er by the addition of Er2S3 have been investigated. Optically uniform glasses have been prepared using stoichiometric compositions with 9–12 at.% Ga and doped with 0.5–2 at.% Er. The radiative lifetime of the 4I13/2  4I15/2 transition has been estimated to be equal to 1.78 ms using the Judd–Ofelt analysis. The photoluminescence lifetime distribution has been investigated in optimized glasses using Quadrature Frequency-Resolved Spectroscopy at room and liquid helium temperatures and at different emission wavelengths. All lifetime distributions were found to be sharp peaks centered at ∼2 ms. A radiation diffusion model has been used to understand the discrepancy between measured photoluminescence spectra and those predicted by the McCumber theory. The model predicts a radiative lifetime of the 4I13/2  4I15/2 transition to be around 1.72 ms and a much longer non-radiative lifetime. These results assume quasi-uniform distribution of Er3+ ions with negligible concentration-self-quenching and negligible rate of non-radiative relaxation from 4I13/2 to 4I15/2.  相似文献   

20.
S.M. Kaczmarek  T. Bodziony 《Journal of Non》2008,354(35-39):4202-4210
Electron paramagnetic resonance spectroscopy studies of LiNbO3 single crystal doped with 1 wt% of Yb3+ and 0.1 wt% Er are reported. Additionally, Raman spectra of the following crystals are presented: LiNbO3:Nd, Yb (0.5 wt%, 0.7 wt%), LiNbO3:Nd, Mg (2 wt%, 6 wt%), and LiNbO3:Er (0.3 wt%). Raman spectra have revealed bands in the 50–220 cm?1 range, suggesting the presence of localized phonons. The localized phonons may be considered as indirect evidence of local perturbations around Yb/Er ions, possibly due to formation of Yb/Er ion pairs. EPR spectra are interpreted basing on this presumption using a spin Hamiltonian for the Yb3+ dissimilar ion pairs. This model explains the observed spectral features, apparently due to the C1 symmetry of Yb ions. In the case of the LN:Er sample, the angular dependence of EPR lines enabled distinguishing the presence of several non-equivalent centers. After deconvolution of the main EPR line into several Lorentzian components, the Er3+ center with the lowest C1 point group symmetry was resolved and values of the g tensor were estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号