首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A piezoelectric screw dislocation in the matrix interacting with a circular inhomogeneity with interfacial cracks under antiplane shear and in-plane electric loading at infinity was dealt with. Using complex variable method, a general solution to the problem was presented. For a typical case, the closed form expressions of complex potentials in the inhomogeneity and the matrix regions and derived explicitly when the interface containsthe electroelastic field intensity factors weresingle crack. The image force acting on the piezoelectric screw dislocation was calculated by using the perturbation technique and the generalized Peach-Koehler formula. As a result, numerical analysis and discussion show that the perturbation influence of the interfacial crack on the interaction effects of the dislocation and the inhomogeneity is significant which indicates the presence of the interfacial crack will change the interaction mechanism when the length of the crack goes up to a critical value. It is also shown that soft inhomogeneity can repel the dislocation due to their intrinsic electromechanical coupling behavior.  相似文献   

2.
The electroelastic interaction between a piezoelectric screw dislocation and an elliptical inhomogeneity containing a confocal blunt crack under infinite longitudinal shear and in-plane electric field is investigated. Using the sectionally holomorphic function theory, Cauchy singular integral, singularity analysis of complex functions and theory of Rieman boundary problem, the explicit series solution of stress field is obtained when the screw dislocation is located in inhomogeneity. The intervention law of the interaction between blunt crack and screw dislocation in inhomogeneity is discussed. The analytical expressions of generalized stress and strain field of inhomogeneity are calculated, while the image force, field intensity factors of blunt crack are also presented. Moreover, a new matrix expression of the energy release rate and generalized strain energy density (SED) are deduced. With the size variation of blunt crack, the results can be reduced to the case of the interaction between a piezoelectric screw dislocation and a line crack in inhomogeneity. Numerical analysis are then conducted to reveal the effects of the dislocation location, the size of inhomogeneity and blunt crack and the applied load on the image force, energy release rate and strain energy density. The influence of dislocation on energy release rate and strain energy density is also revealed.  相似文献   

3.
We investigate a semi-infinite crack penetrating a piezoelectric circular inhomogeneity bonded to an infinite piezoelectric matrix through a linear viscous interface. The tip of the crack is at the center of the circular inhomogeneity. By means of the complex variable and conformal mapping methods, exact closed-form solutions in terms of elementary functions are derived for the following three loading cases: (i) nominal Mode-III stress and electric displacement intensity factors at infinity; (ii) a piezoelectric screw dislocation located in the unbounded matrix; and (iii) a piezoelectric screw dislocation located in the inhomogeneity. The time-dependent electroelastic field in the cracked composite system is obtained. Particularly the time-dependent stress and electric displacement intensity factors at the crack tip, jumps in the displacement and electric potential across the crack surfaces, displacement jump across the viscous interface, and image force acting on the piezoelectric screw dislocation are all derived. It is found that the value of the relaxation (or characteristic) time for this cracked composite system is just twice as that for the same fibrous composite system without crack. Finally, we extend the methods to the more general scenario where a semi-infinite wedge crack is within the inhomogeneity/matrix composite system with a viscous interface.  相似文献   

4.
《Comptes Rendus Mecanique》2019,347(10):734-739
Conformal mapping and analytic continuation are employed to prove the existence of an internal uniform electroelastic field inside a non-elliptical piezoelectric inhomogeneity interacting with a screw dislocation. We focus specifically on the case when the piezoelectric matrix surrounding the inhomogeneity is subjected to uniform remote anti-plane mechanical and in-plane electrical loading and a constraint is imposed between the remote loading and the screw dislocation. The constraint can be expressed in a relatively simple decoupled form by utilizing orthogonality relationships between two corresponding eigenvectors. The internal uniform electroelastic field is found to be independent of the presence of the screw dislocation; moreover, it can be expressed in decoupled form.  相似文献   

5.
This paper deals with the electro-elastic coupling interaction between a piezoelectric screw dislocation which is located inside the elliptical inhomogeneity and an electrically conductive confocal rigid line under remote anti-plane shear stresses and in-plane electrical loads in piezoelectric composite material. The analytical-functions of the complex potentials, stress fields and the image force acting on the piezoelectric screw dislocation are obtained based on the principle of conformal mapping, the method of series expansion, the technical of analytic continuation and the analysis of singularity of complex potentials. The rigid line and the piezoelectric material property combinations upon the image force and the equilibrium position of the dislocation are discussed in detail by the numerical computation.  相似文献   

6.
IntroductionPiezoelectric materials have potentials for use in many modern devices and compositestructures. The presence of various defects, such as inclusions, holes, dislocations andcracks, can greatly influence their characteristics and coupled behavio…  相似文献   

7.
The elastic interaction of an edge dislocation, which is located either outside or inside a circular inhomogeneity, with an interfacial crack is dealt with. Using Riemann–Schwarz’s symmetry principle integrated with the analysis of singularity of the complex potentials, the closed form solutions for the elastic fields in the matrix and inhomogeneity regions are derived explicitly. The image force on the dislocation is then determined by using the Peach–Keohler formula. The influence of the crack geometry and material mismatch on the dislocation force is evaluated and discussed when the dislocation is located in the matrix. It is shown that the interfacial crack has significant effect on the equilibrium position of the edge dislocation near a circular interface. The results also reveal a strong dependency of the dislocation force on the mismatch of the shear moduli and Poisson’s ratios between the matrix and inhomogeneity.  相似文献   

8.
The electro-elastic interaction between a piezoelectric screw dislocation located either outside or inside inhomogeneity and circular interfacial rigid lines under anti-plane mechanical and in-plane electrical loads in linear piezoelectric materials is dealt with in the framework of linear elastic theory. Using Riemann–Schwarz’s symmetry principle integrated with the analysis of singularity of complex functions, the general solution of this problem is presented in this paper. For a special example, the closed form solutions for electro-elastic fields in matrix and inhomogeneity regions are derived explicitly when interface containing single rigid line. Applying perturbation technique, perturbation stress and electric displacement fields are obtained. The image force acting on piezoelectric screw dislocation is calculated by using the generalized Peach–Koehler formula. As a result, numerical analysis and discussion show that soft inhomogeneity can repel screw dislocation in piezoelectric material due to their intrinsic electro-mechanical coupling behavior and the influence of interfacial rigid line upon the image force is profound. When the radian of circular rigid line reaches extensive magnitude, the presence of interfacial rigid line can change the interaction mechanism.  相似文献   

9.
Propagation of P-wave in an unbounded elastic polymer medium which contains a set of nested concentric spherical piezoelectric inhomogeneities is formulated. The polymer matrix is made of Epoxy and is isotropic; each phase of the inhomogeneity is made of a different piezoelectric material and is radially polarized and has spherical isotropy. Note that the individual phases are homogeneous, and all interfaces are perfectly bonded. The scattered displacement and electric potentials in the matrix are expressed in terms of spherical wave vector functions and Legendre functions, respectively. The transmitted displacement and electric potentials within each phase of the piezoelectric particle are expressed in terms of Legendre functions. The equations of motion and electrostatics in each phase of the piezoelectric inhomogeneity lead to a system of coupled second order differential equations, which is solved using the generalized Frobenius series. The present theory is extended to the case where the core of the inhomogeneity is made of PZT-4 and its coating is made of functionally graded piezoelectric material (FGPM) whose microstructural composition varies smoothly from PZT-4 at the core–coating interface to Epoxy at the coating–matrix interface. The effects of different types of variation in the electro-mechanical properties of FGPM on scattering cross-section and other electro-mechanical fields are addressed. The present theory is valid for arbitrary coating thickness, and arbitrary frequencies.  相似文献   

10.
压电材料椭圆夹杂界面开裂问题的电弹性耦合解   总被引:1,自引:0,他引:1  
仲政 《力学季刊》1998,19(1):9-14
本文研究了在反平面剪切和面内电场的共同作用下,压电材料椭圆夹杂的界面开裂问题,假定夹杂是刚性的导体,采用复变函数保角变换和级数展开方法,可确定压电材料基体的复势表达式,进而求得夹杂界面开裂的电弹性耦合的能量释放率。  相似文献   

11.
摘要:研究了穿透圆形夹杂界面的半无限楔形裂纹与裂纹尖端螺型位错的干涉问题。应用复变函数解析延拓技术与奇性主部分析方法,得到了位错位于半圆形夹杂内部时,半无限基体和半圆形夹杂内复势函数的解析解。然后利用保角映射技术得到了穿透圆形夹杂界面的半无限楔形裂纹尖端螺型位错产生的应力场以及作用在位错上的位错力的解析表达式。主要讨论了螺型位错对裂纹的屏蔽效应以及从楔形裂纹尖端发射位错的临界载荷条件。研究结果表明正的螺型位错可以削弱楔形裂纹尖端的应力强度因子,屏蔽裂纹的扩展,屏蔽效应随位错方位角的增大而减小。位错发射所需的无穷远临界应力随发射角的增加而增大,最可能的位错发射角度为零度,直线裂纹尖端位错的发射比楔形裂纹尖端位错的发射更容易,硬基体抑制位错的发射。  相似文献   

12.
The interaction between a piezoelectric screw dislocation and an interphase layer in piezoelectric solids is theoretically investigated.Here,the dislocation located at arbitrary points inside either the matrix or the inclusion and the interfaces of the interphase layer are imperfect.By the complex variable method,the explicit solutions to the complex potentials are given,and the electroelastic fields can be derived from them.The image force acting on the dislocation can be obtained by the generalized PeachKoehler formula.The motion of the piezoelectric screw dislocation and its equilibrium positions are discussed for variable parameters.The important results show that,if the inner interface of the interphase layer is imperfect and the magnitude of degree of the interface imperfection reaches the certain value,two equilibrium positions of the piezoelectric screw dislocation in the matrix near the interface are found for the certain material combination which has never been observed in the previous studies(without considering the interface imperfection).  相似文献   

13.
Hao-Peng Song  Cun-Fa Gao 《Meccanica》2012,47(5):1097-1102
The interaction between a screw dislocation and an elastic semi-cylindrical inhomogeneity abutting on a rigid half-plane is investigated. Utilizing the image dislocations method, the closed form solutions of the stress fields in the matrix and the inhomogeneity region are derived. The image force acting on the dislocation is also calculated. The results were used to study the interaction between a screw dislocation and a rigid wedge inhomogeneity with an elastic circular inhomogeneity at the tip by means of conformal mapping. The results show that an unstable equilibrium point of the dislocation near the semi-cylindrical inhomogeneity is found when the inhomogeneity is softer than the matrix. Moreover, the force on the dislocation is strongly affected by the position of the dislocation and the shear modulus of the semi-circular inhomogeneity. Positive screw dislocations can reduce the SIF of the rigid wedge inhomogeneity (shielding effect) only when it located in the lower half-plane. The shielding effect increases with the increase of the shear modulu of both the matrix and the inhomogeneity and increases with the increase of the wedge angle. The shielding effect (or anti-shielding effect) reaches the maximum when the dislocation tends to the wedge inhomogeneity interface.  相似文献   

14.
The interaction between a screw dislocation and a circular inhomogeneity in gradient elasticity is investigated. The screw dislocation is located inside either the inhomogeneity or the matrix. By using the Fourier transform method, closed analytical solutions are obtained when the inhomogeneity and the matrix have the same gradient coefficient. The explicit expressions of image forces exerted on screw dislocations are derived. The motion of the appointed screw dislocation and its equilibrium positions are discussed. The results show that the classical singularity is eliminated. Especially, for the case of a tiny inhomogeneity, the relation of dislocations and inhomogeneities become quite different. The screw dislocation may be attracted by the stiff inhomogeneity and repelled by the soft inhomogeneity when it tends to the interface. So there is an unstable equilibrium position when a dislocation tends to a tiny stiff inhomogeneity and there is a stable equilibrium position when a dislocation tends to a tiny soft inhomogeneity.  相似文献   

15.
The anti-plane problem of N arc-shaped interfacial cracks between a circular piezoelectric inhomogeneity and an infinite piezoelectric matrix is investigated by means of the complex variable method. Cracks are assumed to be permeable and then explicit expressions are presented, respectively, for the electric field on the crack faces, the complex potentials in media and the intensity factors near the crack-tips. As examples, the corresponding solutions are obtained for a piezoelectric bimaterial system with one or two permeable arc-shaped interfacial cracks, respectively. Additionally, the solutions for the cases of impermeable cracks also are given by treating an impermeable crack as a particular case of a permeable crack. It is shown that for the case of permeable interfacial cracks, the electric field is jumpy ahead of the crack tips, and its intensity factor is always dependent on that of stress. Moreover all the field singularities are dependent not only on the applied mechanical load, but also on the applied electric load. However, for the case of a homogeneous material with permeable cracks, all the singular factors are related only to the applied stresses and material constants.  相似文献   

16.
The interaction of a generalized screw dislocation with circular arc interfacial cracks under remote antiplane shear stresses, in-plane electric and magnetic loads in transversely isotropic magnetoelectroelastic solids is dealt with. By using the complex variable method, the general solutions to the problem are presented. The closed-form expressions of complex potentials in both the inhomogeneity and the matrix are derived for a single circular-arc interfacial crack. The intensity factors of stress, electric displacement and magnetic induction are provided explicitly. The image forces acting on the dislocation are also calculated by using the generalized Peach–Koehler formula. For the case of piezoelectric matrix and piezomagnetic inclusion, the shielding and anti-shielding effect of the dislocation upon the stress intensity factors is evaluated in detail. The results indicate that if the distance between the dislocation and the crack tip remains constant, the dislocation in the interface will have a largest shielding effect which retards the crack propagation. In addition, the influence of the interfacial crack geometry and materials magnetoelectroelastic mismatch upon the image force is discussed. Numerical computations show that the perturbation effect of the above parameters upon the image force is significant. The main result shows that a stable or unstable equilibrium point may be found when a screw dislocation approaches the surface of the crack from infinity which differs from the perfect bonded case under the same conditions. The present solutions contain a number of previously known results which can be shown to be special cases.  相似文献   

17.
We use conformal mapping techniques and analytic continuation to prove that the stress field inside a non-parabolic open inhomogeneity embedded in a matrix subjected to uniform remote anti-plane stresses can nevertheless remain uniform despite the presence of a screw dislocation in its vicinity. Furthermore, the internal uniform stresses inside the inhomogeneity are found to be independent of both the shape of the inhomogeneity and the presence of the screw dislocation. On the other hand, we find that the existence of the nearby screw dislocation exerts a significant influence on the non-parabolic shape of the inhomogeneity.  相似文献   

18.
研究位于基体或夹杂中任意点的压电螺型位错与含界面裂纹圆形涂层夹杂的电弹耦合干 涉问题. 运用复变函数方法,获得了基体,涂层和夹杂中复势函数的一般解答. 典型例 子给出了界面含有一条裂纹时,复势函数的精确级数形式解. 基于已获得的复势函数和广 义Peach-Koehler公式,计算了作用在位错上的像力. 讨论了裂纹几何条件,涂层厚度和材 料特性对位错平衡位置的影响规律. 结果表明,界面裂纹对涂层夹杂附近的位错运动有很大 的影响效应,含界面裂纹涂层夹杂对位错的捕获能力强于完整粘结情况;并发现界面裂纹长 度和涂层材料常数达到某一个临界值时可以改变像力的方向. 解答的特殊情形包含了以 往文献的几个结果.  相似文献   

19.
This article presents an analysis of the scattering of anti-plane shear waves from a single cylindrical inhomogeneity partially bonded to an unbounded magneto-electro-elastic matrix. The magneto-electric permeable boundary conditions are adopted. The crack opening displacement is represented by Chebyshev polynomials and a system of equations is derived and solved for the unknown coefficients. Some examples are calculated and the results are illustrated. The results show that the COD increases when the piezomagnetic coefficient of the inhomogeneity bonded to the piezoelectric matrix becomes larger, and that the COD decreases when the piezomagnetic coefficient of the matrix with the piezoelectric inhomogeneity increases.  相似文献   

20.
We consider the anti-plane shear deformation of a three-phase inhomogeneity-coating-matrix composite containing a coated non-elliptical inhomogeneity whose surrounding matrix is subjected to the action of a screw dislocation and uniform remote anti-plane shear stresses. Our objective is to establish conditions under which the inhomogeneity maintains an internal uniform stress field. Our analysis, which is based on a carefully chosen conformal mapping function, clearly indicates that such an internal uniform stress distribution can be achieved independently of the action of the screw dislocation, which influences the shape of the inhomogeneity depending on its proximity to the dislocation. In fact, we find that when the screw dislocation is located far from the coated inhomogeneity, the corresponding material interfaces become two confocal ellipses as reported previously in the literature. A simple criterion for the convergence of the series in the conformal mapping function is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号