首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
This paper made a qualitative identification of ordinary vegetable oil and waste cooking oil based on Raman spectroscopy. Raman spectra of 73 samples of four varieties oil were acquired through the portable Raman spectrometer. Then, a partial least squares discriminant analysis (PLS‐DA) model and a discrimination model based on characteristic wave band ratio were established. A classification variable model of olive oil, peanut oil, corn oil and waste cooking oil that was established through the PLS‐DA model could identify waste cooking oil accurately from vegetable oils. The identification model established based on selection of waveband characteristics and intensity ratio of different Raman spectrum characteristic peaks could distinguish vegetable oils from waste cooking oil accurately. Research results demonstrated that both ratio method and PLS‐DA could identify waste cooking oil samples accurately. The identification model based on characteristic waveband ratio is simpler than PLS‐DA model. It is widely applicable to identification of waste cooking oil. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
发展了一种基于近红外自相关谱定性定量分析掺三聚氰胺奶粉的检测方法。分别配置40个纯奶粉样品和40个不同质量百分比浓度的掺三聚氰胺奶粉(10-4%~40%, w/w)样品,采集了所有样品的一维近红外漫反射光谱,以奶粉中掺入的三聚氰胺浓度为外扰进行相关计算,选择随浓度变化敏感的7 000~4 200 cm-1为建模区间。在提取自相关谱信息的基础上,建立了定性定量分析掺三聚氰胺奶粉的偏最小二乘模型,并与常规一维近红外谱模型的预测结果进行了比较。所建立的方法对未知样品的识别正确率为100%,预测均方根误差(RMSEP)为0.63%;而一维近红外谱的识别正确率为96.2%,RMSEP为0.84%。研究结果表明:相对于常规一维近红外谱,所建立的方法能提供更好的预测结果,其原因可能是自相关谱能提取更多的特征信息。  相似文献   

3.
奶粉的真伪和掺伪近年来受到广泛的关注,研究一种操作便捷,能准确、快速、全面鉴定奶粉品牌并实现奶粉掺假鉴别的新方法对于奶粉的质量控制具有重要的意义。为实现奶粉的真伪鉴别,采集三种品牌奶粉贝因美、飞鹤和雀巢的拉曼光谱,并利用拉曼谱图特征峰结合最近邻算法(nearest neighbor,NN)的模型对三种品牌奶粉进行识别,在10次交叉验证的基础上,平均识别率为99.56%。为实现奶粉的掺伪分析,将飞鹤奶粉与雀巢奶粉按不同质量比(0∶1,1∶3,1∶1,3∶1,1∶0)混合成五种掺伪奶粉,提取掺伪奶粉中的脂肪,采集脂肪样本的拉曼光谱,分别使用拉曼谱图特征峰结最近邻算法的模型和核主成分分析(kernel principal components analysis,KPCA)结合最近邻算法的模型对五种脂肪样本进行识别,10次交叉验证下的平均识别率分别为93.33%和98.89%,平均运算时间分别为0.085和0.104 s。实验证明:特征峰结合NN的算法可以快速实现对奶粉真伪的判别,但此算法不能很好的区分掺伪奶粉;拉曼光谱-KPCA-NN模型可以为奶粉的掺伪检测提供一种简便、准确、快速的方法。  相似文献   

4.
掺有植物性填充物牛奶的近红外光谱判别分析   总被引:6,自引:0,他引:6  
为探索近红外光谱技术在生鲜牛奶掺假检测中的应用, 寻找一种快速的检测方法,以分别掺有植物奶油、植物蛋白、淀粉的牛奶为材料,利用傅里叶变换近红外光谱仪对样品进行扫描并得到光谱数据, 应用Fisher线性判别分析和偏最小二乘法对试验数据进行了多元统计分析。分析结果表明,利用Fisher判别分析建立的掺假牛奶判别模型的正确判别率达到97.78%,对未知样进行检验,正确判别率达到94.44%;利用偏最小二乘法建立的各掺假物质掺入量的定量检测模型,各掺假牛奶的校正集决定系数(R2)均在99.0%以上,各掺假牛奶的验证集决定系数均在98.5%以上,模型的预测效果良好。上述2种方法说明了近红外光谱技术可以实现对掺有植物性填充物牛奶的快速定性、定量鉴别。  相似文献   

5.
基于FTIR的芝麻油真伪鉴别和掺伪定量分析模型   总被引:1,自引:0,他引:1  
把低价油掺入到高价油是食用油脂中的常见掺伪现象,芝麻油由于品质好价格高,市场上时有假冒伪劣产品,因此应用FTIR并结合化学计量学,建立了芝麻油的真伪和掺伪的快速分析方法。首先分析了芝麻油与大豆油、葵花籽油在4 000~650 cm-1范围的FTIR谱图,由于食用植物油都是不同脂肪酸甘油三酯的混合物,其谱图极为相似,很难发现芝麻油与其他油脂的明显差异。但是不同食用油的脂肪酸组成不同,其1 800~650 cm-1红外指纹特征区也有所不同,因此可以选择该区域,对红外光谱数据用化学计量学方法进行分类识别。通过建立主成分分析(PCA)和簇类独立软模式识别(SIMCA)模型,进行了芝麻油的真伪鉴别,该模型聚类效果较为理想,识别正确率达到了100%;采用标准正态化校正(SNV)和偏最小二乘法(PLS),经过PCA分析计算,芝麻油中掺入大豆油、葵花籽油的掺伪检测限均为10%;利用FTIR和PLS,建立了芝麻油掺的定量分析模型,该模型预测值与实际值有着良好的对应关系,预测相对误差为-6.87%~8.07%之间,说明定量模型可行。本方法能够实现芝麻油的快速真伪鉴别和掺伪定量分析,其优点是模型一旦建立,分析简便、快速,可以满足大量样品的日常监测。  相似文献   

6.
The clear coats from a collection of automotive paint samples of 139 vehicles, covering a range of Australian and international vehicle manufacturers and sold in Western Australia, were characterised using FT‐Raman spectroscopy. Principal component analysis (PCA) revealed 19 distinct classes that were associated with the vehicles' manufacturer and model, and in the case of Australian manufacturers, the years of manufacture. Linear discriminant analysis based on the PCA groupings gave excellent discrimination between the groups with 96.9% of the calibration set and 97.6% of the validation set being correctly classified. Although the sample set comprised only vehicles available in Australia, the methodology used is universal and hence applicable in any jurisdiction that is willing and able to generate a statistically significant data set and maintain and update it as new vehicles appear on the market. A FT‐Raman spectroscopy‐based database would rapidly provide information regarding vehicle origin and manufacture and hence generate investigative leads for questioned paint samples found at incident sites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The non‐invasive identification of paint materials used in works of art is essential, both for preserving and restoring them, and also for understanding and verifying the history surrounding their creation. As such, the development of suitable non‐invasive techniques has received much interest in recent years. We have investigated the use of Fourier transform (FT)‐Raman spectroscopy and fibre‐optic reflectance spectroscopy (FORS), together with multivariate principal‐component analysis (PCA) techniques, in order to identify the pigment and binding materials used in made‐up samples representative of real artwork. We demonstrate that both types of spectroscopy provide complementary information which can be used to identify the pigments and binders in paint samples. We show that PCA with FT‐Raman spectra can be used to assist in the identification of oil‐based binders, and that the additional data provided by FORS spectra enables PCA on combined spectra to identify more complex proteinaceious and polysaccharide‐based binding media. The results presented here demonstrate that multivariate analyses of lead‐based paints, using data measured by FT‐Raman and FORS in conjunction, have much potential for identifying individual pigments and binders in paint samples. This provides a path towards computer‐assisted characterisation of paint materials on artwork. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
二维相关近红外光谱检测牛奶中的三聚氰胺   总被引:1,自引:1,他引:0  
配置合格的纯牛奶样本及含有三聚氰胺质量浓度范围为0.01g/L~3g/L的掺杂牛奶样本各20个,并采集其近红外光谱。以牛奶中掺杂三聚氰胺浓度为外扰,构建二维相关同步谱,研究其相关谱特性。在此基础上,结合偏最小二乘判别分析法(PLS-DA)建立定性模型,可以实现纯牛奶与掺伪牛奶的定性鉴别,正确识别率达100%。同时,将二维相关近红外同步谱矩阵与偏最小二乘法(PLS)结合起来,建立定量分析牛奶中掺杂三聚氰胺的数学模型。对未知样品的预测相关系数R达到0.98,预测均方根误差(RM-SEP)为0.18g/L,说明基于同步相关谱矩阵建立定量分析的数学模型是可行的。该方法无需样品处理,成本低,为快速检测掺伪牛奶提供了一种新的途径。  相似文献   

9.
拉曼光谱结合模式识别方法用于大豆原油掺伪的快速判别   总被引:1,自引:0,他引:1  
大豆原油是我国的战略储备物资,然而目前储油市场上频繁出现大豆原油掺混的现象严重影响了食用油储备安全。基于此,通过大豆原油与部分植物精炼油拉曼谱图的特征差异,并结合主成分分析-支持向量机(PCA-SVM)模式识别建立了大豆原油是否掺伪的快速判别方法。以28个大豆原油、46个精炼油、110个掺伪油的拉曼谱图为模型样本;选择位于780~1 800 cm-1波段的谱图,预处理方法同时采用Y轴强度校正、基线校正和谱图归一化法;在此基础上应用PCA法提取特征变量,即以贡献率最高前7个主成分为变量进行SVM分析。SVM校正模型的建立是以随机选取的20个大豆原油和75个掺伪油样组成校正集,以8个大豆原油和35个掺伪油样组成验证集,分别运用并比较四种核函数算法建立的大豆原油SVM分类模型,并采用网格搜索法(grid-search)优化模型的参数,以四种模型的分类性能作为评判标准。结果表明:应用线性核函数算法构建的SVM分类模型可以很好地完成掺伪大豆原油的判别,校正集识别准确率达到100%,预测结果的误判率为0,判别下限为2.5%。结果表明应用拉曼光谱结合化学计量学能够用于大豆原油掺伪的快速鉴别。拉曼光谱简便、快速、无损、几乎没有试剂消耗,适合现场检测,从而为大豆原油的掺伪分析提供了一种新的备选方法。  相似文献   

10.
The dried roots of Pueraria lobata (Puerariae Lobatae Radix; PLR) and Pueraria thomsonii (Puerariae Thomsonii Radix; PTR) are medicinal herbs that are used interchangeably in clinical practice, even though their chemical profiles are different. Therefore, the aim of this study was to develop a rapid and non‐destructive method for the quality control of Pueraria species using Raman spectroscopy in combination with partial least squares analysis. Partial least squares‐discriminant analysis (PLS‐DA) was used to differentiate PLR from PTR, whereas partial least squares regression (PLSR) was used to predict the total phenolic content (TPC) and antioxidant capacities of the Pueraria species. Raman spectroscopy revealed that spectral characteristics of starch and polyphenols differentiated the two species, with the PLS‐DA model giving 100% classification accuracy for the tested samples. A significantly higher TPC (p < 0.001), 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) radical scavenging activity (p < 0.001) and cupric reducing antioxidant capacity (CUPRAC; p < 0.001) were observed for PLR as compared to PTR. The high ratio of performance to deviation values (TPC: 9.84; ABTS: 7.11; CUPRAC: 7.13) indicated the PLSR models were robust for predicting TPC and antioxidant capacities. The loading plot revealed that the content of starch and polyphenols were important factors in differentiating PLR from PTR and predicting TPC and antioxidant capacities. The results demonstrate that Raman spectroscopy coupled with chemometrics is a rapid method for the quality control of PLR and PTR. These methods can be applied as a template for the quality control of other herbal medicines and products to promote the correct identification of herbs for clinical practice. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Leptospermum scoparium (Mānuka) is the source of nectar for Unique Mānuka Factor (UMF) honey. The chemical component of interest to this study is dihydroxyacetone (DHA). DHA is the precursor for the chemical methylglyoxyl which is the main chemical responsible for the UMF activity in Manuka honey. Screening commercially bred plants for increased DHA synthesis in L. scoparium is a critical factor in growing the Manuka Honey industry in New Zealand. FT‐Raman spectroscopy, in combination with principal component analysis and partial least squares regression analysis, was investigated as an analytical tool for building a screening model for DHA in the nectar of L. scoparium. Leaf samples of seven cultivars of the species L. scoparium were collected in an attempt to correlate metabolic factors in the plant with DHA synthesis in the nectar. Leaf material was analysed using Fourier transform‐raman spectroscopy (FT‐Raman). The DHA levels in nectar samples of the same cultivars were measured using standard LC‐MS methods. This study showed that the application of multivariate analysis of FT‐Raman spectra from leaf material is a useful tool to screen for DHA potential in L. scoparium. The PLS regression shows that we can screen for DHA concentrations in the range of 3300–7600 mg/kg plus or minus 20% standard error and can distinguish low medium and high DHA synthesis in the group of plants studied. The model for predicting DHA concentrations is influenced by a significant contribution from the spectral variance due to beta‐carotene and other highly scattering compounds that are not directly correlated with UMF. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
花椒是我国的八大调味料之一。目前花椒市场掺假现象较为多见,为实现掺假花椒粉的快速定性鉴别,采用了近红外光谱结合化学计量学方法进行了探讨。将麦麸粉、稻糠粉、玉米粉和松香粉以1 Wt/Wt.%的递增梯度分别掺入红花椒粉和青花椒粉中,制备掺假浓度范围为1~54 Wt/Wt.%的掺假花椒粉样品,以掺假花椒粉和纯花椒粉共462份样品依次采集其800~2 500 nm范围的漫反射近红外光谱。采用主成分分析法(PCA)对光谱数据进行分析,前3个主成分累计贡献率达98.72%,做出的得分图表明PCA法对掺假的花椒粉具有较好的区域划分。347份样本作为校正集,以特征谱区2 000~2 200 nm范围的257个采样点的光谱信号作为输入,采用判别偏最小二乘法(DPLS)和支持向量机(SVM)建立定性鉴别模型,经不同光谱预处理,对115份验证集样本进行预测,总体鉴别正确率在97.39%~100%之间,表明该方法是快速定性鉴别掺假花椒粉的一个有效手段。  相似文献   

13.
We have investigated the potential of Raman spectroscopy with excitation in the visible spectral range (VIS Raman) as a tool for the classification of different vegetable oils and the quantification of adulteration of virgin olive oil as an example. For the classification, principal component analysis (PCA) was applied, where 96% of the spectral variation was characterized by the first two components. A significant similarity between sunflower oil and extra‐virgin olive oil was found using this approach. Therefore, sunflower oil is a potential candidate for adulteration in most commercially available olive oils. Beside the classification of the different vegetable oils, we have successfully applied Raman spectroscopy in combination with partial least‐squares (PLS) regression analysis for very fast monitoring of adulteration of extra‐virgin olive oil with sunflower oil. Different mixtures of extra‐virgin olive oil with three different sunflower oil types were prepared between 5 and 100% (v/v) in 5% increments of sunflower oil. While in the present context the adulteration usually refers to the addition of reasonable amounts of the adulterant (given the similarity with the basic product), we show that the technique proposed can also be used for trace analysis of the adulterant. Without using techniques like surface‐enhanced Raman scattering (SERS), a quantitative detection limit down to 500 ppm (0.05%) could be achieved, a limit irrelevant for adulteration in commercial terms but significant for trace analysis. The qualitative detection limit even was at considerably lower concentration values. Based on PCA, a clear discrimination between pure extra‐virgin olive oil and olive oil adulterated with sunflower oil was achieved. The adulterant content was successfully determined using PLS regression with a high correlation coefficient and small root mean‐square error for both prediction and validation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
硫脲是一种含氮量高、毒性较大的潜在蛋白掺假化合物,常规的实验室检测方法过程复杂、效率低,无法满足口岸对大批次散装奶粉样本质量快速筛查的需求。为解决口岸抽样监管缺乏快速实时评价方法的难题,利用自主搭建的便携式点扫描拉曼高光谱成像系统,开发了一种简单高效的奶粉中硫脲现场可视化快速检测方法,确保散装奶粉在进出口环节的精准监管。研究以不同添加浓度(0.005%~2.000%)的硫脲奶粉混合物为样本,分别用Whittaker平滑方法和自适应迭代重加权惩罚最小二乘算法(airPLS)消除光谱数据的背景随机噪音信号和荧光背景干扰,峰值识别后对硫脲特征位移处的单波段数据进行二值化处理,得到混合样本感兴趣区域的二值热图,通过二值图中硫脲像素点的有无和坐标,对奶粉中的硫脲进行定性判别和定位分析。进一步分析得感兴趣区域内硫脲像素点数目与添加浓度的关系,结果表明随着添加浓度的增加,硫脲像素点数目呈线性增长趋势,其中线性拟合的决定系数(R2)为0.991 3,硫脲的最低检出浓度为0.05%。在0.25%,0.60%,1.20%和1.50%的添加水平下,利用像素点数目和线性拟合关系预测奶粉中硫脲的浓度,结果显示预测浓度的相对误差范围为-9.41%~4.01%,相对标准偏差小于7%。该点扫描拉曼高光谱成像系统能在10 min内完成单个样本的检测,结合软件控制系统,实时对奶粉中的硫脲颗粒进行定性、定量和污染分布分析,方法简单高效、准确性好、灵敏度高、稳定性强,为口岸现场对散装奶粉中硫脲掺假物的实时快速检测提供了技术监管手段,能显著提升口岸现场散装样本的监管环节质量评价的精准性,为进口奶粉快速通关提供技术保障。  相似文献   

15.
Raman spectroscopy is structure sensitive non‐destructive method that allows observing the status of biological tissues with minimal impact. This method has a great potential in the diagnosis of various types of degenerative diseases including cancer damages. Near‐infrared Fourier transform (NIR‐FT)‐Raman (λex ~1064 nm), NIR‐visible (Vis)‐Raman (λex ~785 nm) and Vis‐Raman (λex ~532 nm) spectra of normal and colorectal carcinoma colon tissue samples were recorded in macroscopic mode at 10–20 randomly chosen independent sites. In the cases of NIR‐Vis‐ and Vis‐Raman spectra, enhanced resonance effects were observed for tissue chromophores absorbing in the visible area. Evident spectral differences were noticed for Raman spectra of normal colon tissue samples in comparison with abnormal samples. The average Raman spectra of colon tissue samples were analysed by principal component analysis (PCA) to discriminate normal and abnormal tissues. PCA of combined dataset containing Raman intensities of chosen NIR‐FT, NIR‐Vis or Vis‐Raman bands led to discrimination of normal and abnormal colon tissue samples. Therefore, combination of these three Raman methods can be helpful for recognizing cancer lesions in colon for diagnostic purposes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Sildenafil and tadalafil are inhibitors of phosphodiesterase type 5, which are frequently added into healthcare products. The objective of this study was to evaluate the possibility of using micro‐Raman spectroscopy as a non‐destructive technique to screen for sildenafil and tadalafil in adulterated healthcare products. Using a viewing microscope, the suspect area of healthcare products was selected, which had a discernable crystal form or shape from the surrounding zone. Optimization of instrumental parameters of the Raman spectrometer was chosen to reduce the background fluorescence, and the Raman spectra were collected. The spectra collected were compared with the standard Raman spectra of pure sildenafil and tadalafil. Samples with an identifiable Raman signature to that of sildenafil or tadalafil could be confirmed using liquid chromatography–mass spectrometry (LC/MS). Additionally, wavelet denoising combined with similarity calculation was used to establish an automated approach for discrimination of adulterated healthcare products. Correlation coefficient was chosen for similarity calculation based on the spectra collected and the standard Raman spectra of pure sildenafil and tadalafil. We compared ten samples, secured by administrative authorities in Shanghai, to analyse and demonstrate the capabilities of our proposed method. We established six samples containing sildenafil or tadalafil warranting analysis using LC/MS. Thus, the use of micro Raman spectroscopy provides a quick, convenient and non‐destructive method for screening adulterated chemicals in healthcare products. Raman spectroscopy combined with similarity calculation requires little training after spectra library is developed, thus showing great promise to identify the adulterated healthcare products in the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
奶粉富含人体所需的五大营养物质,是婴幼儿主要的营养来源之一,奶粉中的营养成分对婴幼儿的生长发育具有重要影响,除乳糖外的糖类含量超标可能对婴幼儿健康产生不良影响。由于奶粉成分复杂,目前的色谱法和近红外光谱法检测技术都难以满足奶粉糖分快速无损检测的要求,因此亟须探索一种奶粉中葡萄糖、蔗糖含量快速无损检测方法。太赫兹波对不同大分子物质的吸收峰具有“指纹”特性,可利用该特性对不同的大分子物质进行识别。应用太赫兹时域光谱技术(THz-TDS)并结合化学计量学方法对奶粉中葡萄糖、蔗糖两种糖分的定性定量检测方法进行了研究。实验装置采用TAS7500TS太赫兹光谱系统,实验样品为不含糖的婴幼儿奶粉和纯度大于99%的葡萄糖、蔗糖晶体及不同梯度浓度的奶粉-葡萄糖、奶粉-蔗糖混合物,实验分别采集了3种纯品样品及15种不同梯度浓度的奶粉-葡萄糖、奶粉-蔗糖混合物样品的太赫兹时域信号,每个样品采集三次并取平均值作为其时域光谱信号,经快速傅里叶变换(FFT)得到各样品的太赫兹频域信号,再根据Dorney提出的光学参数提取公式计算得到各样品的吸收系数谱和折射率谱。最后分别基于两组混合物样品的吸收系数谱和折射率谱数据,采用偏最小二乘法(PLS)建立相应的定量分析模型,校正集和预测集样品比例为2∶1。实验结果表明,奶粉在太赫兹波段无明显特征吸收峰,葡萄糖和蔗糖分别在1.45,1.8,1.98,2.7 THz和1.5,1.9,2.6 THz频率处有较强的特征吸收峰,可根据两种物质的太赫兹指纹特征峰进行定性分析。不同梯度浓度的两组混合物的整体吸收峰位置与葡萄糖、蔗糖纯品太赫兹吸收峰位置基本一致,具有稳定的吸收特性。基于吸收系数谱和折射率谱数据建立偏最小二乘法模型,均可实现奶粉中葡萄糖和蔗糖的定量分析,且由折射率谱建立的葡萄糖、蔗糖定量回归模型效果均优于由吸收系数谱建立的模型效果,其中,奶粉-葡萄糖混合物中葡萄糖含量PLS模型的校正集相关系数(Rc)及均方根误差(RMSEC)分别为0.99和0.18%,预测集RP及RMSEP分别为0.96和0.66%,奶粉-蔗糖混合物中蔗糖含量PLS模型的校正集Rc及RMSEC分别为0.96和0.55%,预测集RP及RMSEP分别为0.99和0.25%,葡萄糖和蔗糖定量模型的预测效果均较为理想。研究结果表明THz-TDS技术可有效用于奶粉中葡萄糖和蔗糖定性定量分析,为运用THz-TDS技术开展奶粉掺假及品质快速检测方法研究提供参考。  相似文献   

18.
Lavender (Lavandula angustifolia) is used for cosmetics, perfumes and medicine (antimicrobial activity and relaxant properties) while lavandin (sterile hybrid of L. angustifolia P. Mill. × Lavandula latifolia (L.f.) Medikus) is used for air fresheners, deodorants and soaps. These plants are widely cultivated for essential oil production. In this study, 104 samples were analyzed including 62 lavandin and 42 lavender oil samples from several varieties. The Raman spectra are similar but can be differentiated by chemometrics treatment. Data structure may be studied by PCA. A PLS regression model was used for quantitative analysis of the main compounds such as linalyl acetate, linalool and eucalyptol. The reference data were obtained by gas chromatography. The performance of the method was also tested to discriminate between the two species and the seven varieties (Abrial, Fine, Grosso, Maillette, Matherone, Sumian and Super) by PLS‐DA regression. The examination of PLS and PLS‐DA regression coefficients allowed for the identification of species and of the varieties' metabolomic markers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Identification of the gasoline purity is important for quality control and detection of gasoline adulteration. Principal component analysis and Raman spectroscopy were used to authenticate gasoline adulterated with methyl tert‐butyl ether (MTBE) and benzene. Gasoline could be clearly distinguished from gasoline adulterated with MTBE and benzene by a plot of the first principal component (x‐axis) against the second principal component (y‐axis). And the radial basis function neural network was used for quantitative prediction of the volume percentages of MTBE and benzene in gasoline based on Raman Spectra. The correlation coefficient (r) and mean absolute percentage error between predictive values and spiked values were 0.9907 and 0.9934 and 15.73 and 8.19%, respectively. Moreover, the Raman spectra of the samples were obtained with a portable Raman spectrometer. Therefore, the method is simple, effective, fast, does not require sample pre‐processing, and is promising for rapid gasoline detection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
与其他动物油脂相比,饲用鱼油的营养价值高、产量低、提炼工艺复杂,其真实性的鉴定有利于市场的正常运行和消费者权益的保障。本研究提出一种基于红外光谱的连续分类策略,并将其应用于饲用鱼油中违法掺假陆生动物油脂的鉴别分析。实验收集动物油脂样品共50个(鱼油12个、猪脂10个、鸡油9个、牛脂10个、羊脂9个),采用均匀混合法制备饲用鱼油中掺加陆生动物油脂的样品160个。采用主成分分析(PCA)方法进行用饲用鱼油中掺假陆生动物油脂红外光谱鉴别分析的可行性分析。结果表明:纯鱼油和掺假陆生动物油脂鱼油之间得到了较好的区分;其他掺假陆生动物油脂鱼油之间有一定的鉴别分析潜力。基于偏最小二乘判别分析(PLS-DA)和单类别偏最小二乘法(OC-PLS),第一步,建立检测鱼油真实性的单类别筛查模型;第二步,建立多类别陆生动物油脂掺假的鉴别模型,探讨了两种陆生动物油脂类别划分方式对鉴别模型的影响。研究表明:单类别筛查模型成功区分了纯鱼油和掺假鱼油,识别率和拒绝率均为100%,误判率为0%;按照纯鱼油、猪脂掺假鱼油、鸡油掺假鱼油、牛脂掺假鱼油和羊脂掺假鱼油进行分类,多类别鉴别模型的识别率和拒绝率均大于80%,误判率均在15%以下;按照纯鱼油、非反刍动物油脂掺假和反刍动物油脂掺假进行分类,多类别鉴别模型的识别率和拒绝率均提升至90%以上,误判率减小至7%以下。在提出的连续分类策略中,中红外光谱技术结合化学计量学可以用于高效筛查鱼油中是否掺假陆生动物油脂,并且可以进一步确证掺假陆生动物油脂种属源。该方法作为一种快速筛查与确证分析工具可满足大样本量鱼油中陆生动物油脂掺假的检测需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号