首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究煤灰中矿物质的性质通常从矿物组成的表征入手。为了分析两种高硅铝煤灰的矿物成分,采用傅里叶变换红外光谱(FTIR)、拉曼光谱和X射线衍射(XRD)技术对煤灰样进行了测试和综合表征,将FTIR和拉曼光谱的分析结果与XRD进行了比较。FTIR结果表明,在1 100~1 000 cm-1范围内高硅铝煤灰出现最强的特征峰,例如石英峰(1 089 cm-1)和偏高岭石峰(1 042 cm-1),它们都归属于Si-O伸缩振动。对原始红外谱图进行二阶导数处理后,可获得重叠峰的峰位,有助于更完整的解析矿物吸收峰,从而获得更丰富的矿物组成信息。煤灰中硬石膏的红外和拉曼光谱发现,在1 157,1 126和674 cm-1的拉曼光谱峰与在1 151,1 120和678 cm-1的红外光谱峰振动模式分别相同且峰位接近,还存在一些完全不同的拉曼光谱与红外光谱峰,表明这两种光谱存在互补性。尽管煤灰中锐钛矿含量很低,但由于Ti-O的极化率很高,因此拉曼光谱显示锐钛矿的144 cm-1峰远远强于石英的461 cm-1峰。XRD结果表明,煤灰中主要存在石英、云母、赤铁矿、硬石膏和未知的无定形相矿物,FTIR和拉曼光谱综合分析的结果表明除了这些矿物,还存在偏高岭石、无定形氧化硅、长石、方解石和锐钛矿等。在定性分析方面,将FTIR和拉曼光谱结合起来比XRD单独获得的矿物组成信息更为详细。  相似文献   

2.
3.
The influence of lithium, sodium, potassium, rubidium, and cesium on the electronic system of the 4‐nitrobenzoic acid molecule was studied. The vibrational (FT‐IR, FT‐Raman) and NMR (1H and 13C) spectra for 4‐nitrobenzoic acid salts of alkali metals were recorded. The assignment of vibrational spectra was done. Characteristic shifts of band wavenumbers and change in band intensities along the metal series were observed. Good correlation between the wavenumbers of the vibrational bands in the IR and Raman spectra for 4‐nitrobenzoates and ionic potential, electronegativity, atomic mass, and affinity of metals were found. The chemical shifts of protons and carbons (1H, 13C NMR) in the series of studied alkali metal 4‐nitrobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by HF, B3PW91, B3LYP methods using 6‐311++G** basis set. The theoretical IR, Raman, and NMR spectra were obtained. The theoretical vibrational spectra were interpreted by means of potential energy distributions (PEDs) using VEDA 3 program. The calculated parameters were compared to experimental characteristic of studied compounds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Recently, rotational spectra of giant Rydberg matter (RM) clusters were studied in the radio frequency range (Mol. Phys. 105 (2007) 933–939), giving high‐precision bond distances in the nanometer range. However, the theoretical and experimental problem of vibrational motion or, rather, coupled electronic‐vibrational motion in the RM clusters is still unsolved; but it is expected that broad phonon bands will exist. Spectroscopic signatures from space make it likely that RM is a common form of matter in the Universe, and phonon bands in this spectroscopic range have not been taken into account so far. Spectroscopic results are now reported on transitions in the range 0.01–20 cm−1, using primarily infrared (IR) lasers to probe the RM in a tunable open cavity with a Fabry–Perot interferometer to aid in the identification of the shifts. Stimulated Raman scattering from electronic transitions and Rabi‐flopping from electronic states in the clusters are observed. The broad stimulated Raman peaks are assigned to one and two consecutive vibrational (electronic‐vibrational) transitions. Theoretical values predicted for vibrations (phonon maxima) and electronic processes are in reasonable agreement with the experimental results. Improved calculations are needed to verify the assignments of the vibrational phonon distributions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Several processes have to be automated in order to use graphene in future industrial applications. One of these is the detection and characterization of graphene and few‐layer graphite (FLG) flakes on a substrate. Raman spectroscopy is an ideal tool for this purpose, as it allows not only the identification of these graphitic materials on arbitrary substrates but also monitoring the quality of flakes within the sample. In this paper, we report how graphene and FLG crystallites can be automatically detected and characterized by monitoring the evolution of Raman bands. We present an algorithm that achieves this purpose and thus has special potential in industrial applications of graphene. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Graphite samples exposed to H, D and He plasma at fluencies from 1016 to 1018 cm−2 have been investigated by means of atomic force and Raman microscopies. The ion energy was varied between 40 and 800 eV, and the ion incidence was either perpendicular (Highly Oriented Pyrolitic Graphite) or parallel (carbon/carbon composite) to the basal plane. When increasing the impinging ion energy, the growth of nanometric domes at the surface has been observed by atomic force microscopy and the incident kinetic energy has been found as the parameter determining their height. Two different Raman signatures related to (1) a graphitic nano‐crystalline component similar to that of a 1014 cm−2 bombarded 1‐, 2‐ and 3‐layer graphene, and to (2) an amorphous component, have been evidenced. Polarization studies have revealed that these components are related to regions with either in‐plane or out‐of‐plane disorder, coexisting in the material. These Raman studies have also revealed that both the defect–defect distance in the first case and the aromatic domain size in the second case are typically 1 nm. When the number of vacancies created in the material increases, the number of in‐plane defects decreases to the benefit of the out‐of‐plane defects. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Raman spectroscopy is widely used for the characterization of bonding type in carbon‐based materials, including carbonized surface layer in ion‐implanted polymers. Studies of the polarization properties of Raman scattering from amorphous carbonaceous materials, however, are very scarce. In this paper, we investigate the polarized Raman spectra of polymethylmethacrylate (PMMA) implanted with 50‐keV Si+ ions at fluences in the range 3.2 × 1014–1.0 × 1017 ions/cm2 and for different visible excitation wavelengths. The spectra of the implanted samples are dominated by the D‐ and G‐bands of sp2 carbon, which evidence strong carbonization of the ion‐modified layer. The multiwavelength excitation allowed us to resonantly probe the depolarization ratios for sp2 clusters of different sizes. We established that the depolarization ratio ρG of the G‐band correlates with the sp2 cluster size approaching the random orientation limit of 0.75 for the smallest clusters and a limiting value of 0.41 for the largest clusters. The experimental findings give evidence for a preferable orientation of the larger size clusters with their hexagonal planes perpendicular to the surface of the sample. A plausible explanation for such an arrangement is that the sp2 clusters form tile‐like arrangements along the ion tracks. This finding may give clues for understanding of the strong transconductance of the ion‐modified layer, and open prospects for the application of polarized Raman spectroscopy as a characterization tool for surface morphology in ion‐implanted materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The Raman spectrum of bukovskýite [Fe3+2(OH)(SO4)(AsO4)· 7H2O] has been studied and compared with that of an amorphous gel containing specifically Fe, As and S, which is understood to be an intermediate product in the formation of bukovskýite. The observed bands are assigned to the stretching and bending vibrations of (SO4)2− and (AsO4)3− units, stretching and bending vibrations and vibrational modes of hydrogen‐bonded water molecules, stretching and bending vibrations of hydrogen‐bonded (OH) ions and Fe3+ (O,OH) units. The approximate range of O H···O hydrogen bond lengths was inferred from the Raman spectra. Raman spectra of crystalline bukovskýite and of the amorphous gel differ in that the bukovskýite spectrum is more complex, the observed bands are sharp and the degenerate bands of (SO4)2− and (AsO4)3− are split and more intense. Lower wavenumbers of δ H2O bending vibrations in the spectrum of the amorphous gel may indicate the presence of weaker hydrogen bonds compared to those in bukovskýite. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The micro/nano structural evolution of a PET single fibre under hydrostatic pressure has been studied by Raman micro spectroscopy in a diamond anvil cell (DAC). Different bands in the Raman spectra were used as probes: the low wavenumber collective modes (<250 cm−1) representative of the long‐range chain organization, as well as the stretching and bending amide and aromatic ring modes representative of the local chain behaviour. The in situ analysis at different pressures shows an evolution from an axial oriented trans‐conformation to an amorphous, isotropic material, i.e. the reverse transformation observed during the process of drawing the fibre from an isotropic amorphous precursor. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Raman characteristics of carbon nitride films synthesized by nitrogen-ion-beam-assisted pulsed laser deposition were investigated. In addition to the D (disorder) band and G (graphitic) band commonly observed in carbon nitride films, two Raman bands located at 1080–1100 and 1465–1480 cm-1 were found from our carbon nitride films. These two bands were well matched with the predicted Raman frequencies for βC3N4 and the observed Raman bands reported for carbon nitride films, indicating their relation to carbon-nitrogen stretching vibrations. Furthermore, the relative intensity ratio of the two Raman bands to the D and G bands increased linearly with increasing nitrogen content of the carbon nitride films. Received: 30 October 2000 / Accepted: 5 February 2001 / Published online: 2 October 2001  相似文献   

11.
In this work, the carbonaceous matter of Orgueil, Murchison and Tagish Lake carbonaceous meteorites and a reference coal is studied by multifrequency continuous-wave electron paramagnetic resonance (EPR) spectroscopy from 4 to 285 GHz. It is found that the shape of the EPR line of the radicals in meteoritic carbonaceous matter is Lorentzian in all the frequency range, while the line shape of the coal is Lorentzian only below 95 GHz and becomes inhomogeneously broadened at higher frequency, as previously observed for coals by other authors. This points to strong exchange interactions in meteoritic carbonaceous matter, resulting from a pronounced spin clustering that does not occur in biogenic carbonaceous matter (coals). The temperature dependence of the EPR line width has been studied in detail at X- and W-bands for the Orgueil meteorite. It confirmed our previous model of the presence of radicals with thermally accessible triplet states (TATS) in meteorites. These TATS, which were attributed to diradicaloids moieties on the basis of molecular quantum DFT calculations (L. Binet, D. Gourier, S. Derenne, F. Robert, I. Ciofini: Geochim. Cosmochim. Acta 68, 881–891, 2004) do not exist in biogenic carbonaceous matter. This analysis also precised the strength of the clustering effect in meteorites, yielding an estimated local spin concentrationN=5·1020 spin/g, which is two orders of magnitude higher than the average spin concentration in the Orgueil meteorite. It is important to note that such spin clustering has also been observed by other authors in synthetic hydrogenated amorphous carbon. It seems that the clustering of radicals is a common feature of synthetic and extraterrestrial (abiotic) carbonaceous matters, while radicals are homogeneously distributed in biogenic carbonaceous matter.  相似文献   

12.
In this paper two series of active carbons obtained at different flow rates of the activating agent, CO2, are characterized in order to establish the different mechanisms of pore development during the activation step. This study complements previous works on textural development during the different steps in the process of obtaining active carbons: coal oxidation, coal pyrolysis and char gasification. As the characteristics of the original and intermediate materials are of capital importance in the pore development of active carbons, the properties of the active carbons, precursor chars and coals were considered and analyzed together. Mercury porosimetry and helium picnometry were used to determine classical textural parameters as well as to perform a more detailed study of the pore volume generation during the different conditions of the activation step. Data obtained from the mercury porosimetry determinations was also employed for fractal determinations according to the methodologies proposed by Friesen and Mikula, Zhang and Li and the procedure of Neimark. Average surface fractal dimensions as well as fractal profiles and local surface fractal dimensions were calculated. The use of different flow rates during the activation step produces changes not only in the ordinary textural parameters but also in the fractal characteristics of the active carbons. Activation at higher flow rates leads to smoother fractal profiles and also to lower values of the average surface fractal dimensions of the active carbons.  相似文献   

13.
牛丽  王选章  朱嘉琦  高巍 《中国物理 B》2013,22(1):17101-017101
Raman spectra of amorphous carbon nitride films (a-C:N) resemble those of typical amorphous carbon (a-C), and no specific features in the spectra are shown due to N doping. The present work provides a correlation between the microstructure and vibrational properties of a-C:N films from first principles. The six periodic model structures of 64 atoms with various mass densities and nitrogen contents are generated by the liquid-quench method using Car-Parinello molecular dynamics. By using Raman coupling tensors calculated with the finite electric field method, Raman spectra are obtained. The calculated results show that the vibrations of C=N could directly contribute to the Raman spectrum. The similarity of the Raman line shapes of N-doped and N-free amorphous carbons is due to the overlapping of C=N and C=C vibration bands. In addition, the origin of characteristic Raman peaks is also given.  相似文献   

14.
Two hydrated hydroxy magnesium carbonate minerals brugnatellite and coalingite with a hydrotalcite‐like structure were studied by Raman spectroscopy. Intense bands are observed at 1094 cm−1 for brugnatellite and at 1093 cm−1 for coalingite attributed to the CO32−ν1 symmetric stretching mode. Additional low intensity bands are observed at 1064 cm−1. The existence of two symmetric stretching modes is accounted for in terms of different anion structural arrangements. Very low intensity bands at 1377 and 1451 cm−1 are observed for brugnatellite, and the Raman spectrum of coalingite displays two bands at 1420 and 1465 cm−1 attributed to the (CO3)2−ν3 antisymmetric stretching modes. Very low intensity bands at 792 cm−1 for brugnatellite and 797 cm−1 for coalingite are assigned to the CO32− out‐of‐plane bend (ν2). X‐ray diffraction studies by other researchers have shown that these minerals are disordered. This is reflected in the difficulty of obtaining Raman spectra of reasonable quality and explains why the Raman spectra of these minerals have not been previously or sufficiently described. A comparison is made with the Raman spectra of other hydrated magnesium carbonate minerals. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The post-growth modification of diamond-like amorphous hydrogenated carbon a-C:H films by laser treatment has been studied by transmission electron microscopy and Raman spectroscopy. a-C:H films grown on Si substrates by benzene decomposition in a rf glow discharge were irradiated with 15 ns pulses of a KrF-excimer laser with fluences in the range of E=50–700 mJ/cm2. At fluences below 100 mJ/cm2 an increase in the number of graphitic clusters and in their ordering was evidenced from Raman spectra, while the film structure remained amorphous according to electron microscopy and electron diffraction observations. At higher fluences the appearance of diamond particles of 2–7 nm size, embedded into the lower crystallized graphitic matrix, was observed and simultaneously a progressive growth of graphite nanocrystals with dimensions from 2 nm to 4 nm was deduced from Raman measurements. The maximum thickness of the crystallized surface layer (400 nm) and the degree of laser annealing are limited by the film ablation which starts at E>250 mJ/cm2. The laser-treated areas lose their chemical inertness. In particular, chemical etching in chromium acid becomes possible, which may be used for patterning the highly inert carbon films.  相似文献   

16.
Raman studies of nanocomposite SiCN thin film by sputtering showed that with increase of substrate temperature from room temperature to 500 °C, a transition from mostly sp2 graphitic phase to sp3 carbon took place, which was observed from the variation of ID/IG ratio and the peak shifts. This process resulted in the growth of C3N4 and Si3N4 crystallites in the amorphous matrix, which led to increase in hardness (H) and modulus (E) obtained through nanoindentation. However, at a higher temperature of 600 °C, again an increase of sp2 C concentration in the film was observed but the H and E values showed a decrease due to increased growth of the graphitic carbon phase. The whole process got reflected in a modified four‐stage Ferrari–Robertson model of Raman spectroscopy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

Amorphous carbon nitride thin films (a‐C:N) were deposited from a carbon target, at room temperature onto silicon substrates, by reactive RF sputtering in a gas mixture of argon and nitrogen. The structural properties of these films have been studied by Raman, infrared (IR), and X‐ray reflectometry spectroscopies. Both the IR and Raman spectra of the a‐C:N films reveal the presence of C–C, C?C, C?N, and C≡N bonding types. The Raman spectra analysis shows, an increase of the C≡N triple bonds content when the concentration of nitrogen C(N2) in the gas mixture is increased. The Raman intensities ratio between the disorder (D) and graphitic (G) bands increases with C(N2) suggesting an increased disorder with the incorporation of nitrogen in the carbon matrix. The effect of C(N2) on the density of a‐C:N films was also investigated by X‐ray reflectometry measurement. The increase of the nitrogen concentration C(N2) was found to have a significant effect on the density of the films: as C(N2) increases from 0 to 100%, the density of the a‐C:N films decreases slightly from 1.81 to 1.62 g/cm3. The low values of density of the a‐C:N films were related (i) to the absence of C–N single bonds, (ii) to the increase of disorder introduced by the incorporation of nitrogen in the carbon matrix, and (iii) to the presence of the bands around 2350 cm?1 and 3400 cm?1 associated with the C–O bond stretching modes and the O–H vibration, respectively, suggesting a high atmospheric contamination by oxygen and water. The presence of these bands suggests the porous character of the studied samples.  相似文献   

18.
《Revue Generale de Thermique》1996,35(414):394-401
Experimental study of the rapid devolatilization of pulverized coals. Rapid devolatilization of various pulverized coals have been studied in a laboratory bench constituted by a flat flame burner of propane which reproduces thermal conditions of an industrial flame. The particles, which undergo a heating rate of 6.106 K−1.s−1 with a peak temperature of 1 100 °C, are completely devolatilized within 24 ms. Fifteen coals, included in a wide range (anthracite to subbituminous coal) have been tested. The coal weight loss is globally proportional to the normalized volatile matter content with some exceptions which confirm the advantage of this laboratory bench. The formation of tars or hydrocarbons has been related to the coal weight loss. Carbon, hydrogen and nitrogen devolatilized fraction have been followed with total mass weight loss. In spite of the fact that hydrogen and carbon devolatilized fractions present a good correlation with the total mass weight loss, the nitrogen devolatilized fraction have an anarchic evolution. For high heating rates, the devolatilization of tars observed for the bituminous coals seems to explain this unpredictable phenomenon. These results will be valorized in comparison with those obtained in industrial flame conditions.  相似文献   

19.
Raman spectra of 1,3‐disilabutane (SiH3CH2SiH2CH3) as a liquid were recorded at 293 K and as a solid at 78 K. In the Raman cryostat at 78 K an amorphous phase was first formed, giving a spectrum similar to that of the liquid. After annealing to 120 K, the sample crystallized and large changes occurred in the spectra since more than 20 bands present in the amorphous solid phase vanished. These spectral changes made it possible to assign Raman bands to the anti or gauche conformers with confidence. Additional Raman spectra were recorded of the liquid at 14 temperatures between 293 and 137 K. Some Raman bands changed their peak heights with temperature but were countered by changes in linewidths, and from three band pairs assigned to the anti and gauche conformers, the conformational enthalpy difference ΔconfH(gaucheanti) was found to be 0 ± 0.3 kJ mol−1 in the liquid. Infrared spectra were obtained in the vapor and in the liquid phases at ambient temperature and in the solid phases at 78 K in the range 4000–400 cm−1. The sample crystallized immediately when deposited on the CsI window at 78 K, and many bands present in the vapor and liquid disappeared. Additional infrared spectra in argon matrixes at 5 K were recorded before and after annealing to temperatures 20–34 K. Quantum chemical calculations were carried out at the HF, MP2 and B3LYP levels with a variety of basis sets. The HF and DFT calculations suggested the anti conformer as the more stable one by ca 1 kJ mol−1, while the MP2 results favored gauche by up to 0.4 kJ mol−1. The Complete Basis Set method CBS‐QB3 gave an energy difference of 0.1 kJ mol−1, with anti as the more stable one. Scaled force fields from B3LYP/cc‐pVQZ calculations gave vibrational wavenumbers and band intensities for the two conformers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
煤结构中存在的大量氢键对其化学结构和性质具有重要影响。为了研究煤在冲击破坏过程中氢键的变化。设计落锤循环冲击系统,实现对煤样的循环定量冲击。利用红外光谱仪进行光谱分析。研究得出东庞1/3焦煤主要的氢键类型是free OH groups, OH…π, OH…OH, cyclic OH tetramers和OH…N以及它们随冲击破坏的变化规律。在冲击力的作用下,煤体分子间氢键吸收强度变化非常明显,自由羟基也在冲击作用下发生机械力化学反应。对红外光谱进行高斯函数拟合分峰,发现各类氢键吸收强度随着冲能量的增加而减小,但其趋势在放缓。统计两者关系,得到各类氢键的光谱吸收强度与冲击能量的拟合方程,两者符合幂函数关系。对比拟合方程的幂指数,得出氢键在受冲击破坏时发生变化的敏感性顺序:free OH groups>cyclic OH tetramers>OH…N>OH…π>OH…OH。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号