首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic response of orthotropic sandwich composite plates impacted by time-dependent external blast pulses is studied by use of numerical techniques. The theory is based on classical sandwich plate theory including the large deformation effects, such as geometric non-linearities, in-plane stiffness and inertias, and shear deformation. The equations of motion for the plate are derived by the use of the virtual work principle. Approximate solutions are assumed for the space domain and substituted into the equations of motion. Then the Galerkin Method is used to obtain the non-linear differential equations in the time domain. The finite difference method is applied to solve the system of coupled non-linear equations. The results of theoretical analyses are obtained and compared with ANSYS results. Effects of the face sheet number, as well as those related to the ply-thickness, core thickness, geometrical non-linearities, and of the aspect ratio are investigated. Detailed analyses of the influence of different type of pressure pulses on dynamic response are carried out.  相似文献   

2.
In this paper, the dynamic instability of thin laminated composite plates subjected to harmonic in-plane loading is studied based on nonlinear analysis. The equations of motion of the plate are developed using von Karman-type of plate equation including geometric nonlinearity. The nonlinear large deflection plate equations of motion are solved by using Galerkin’s technique that leads to a system of nonlinear Mathieu-Hill equations. Dynamically unstable regions, and both stable- and unstable-solution amplitudes of the steady-state vibrations are obtained by applying the Bolotin’s method. The nonlinear dynamic stability characteristics of both antisymmetric and symmetric cross-ply laminates with different lamination schemes are examined. A detailed parametric study is conducted to examine and compare the effects of the orthotropy, magnitude of both tensile and compressive longitudinal loads, aspect ratios of the plate including length-to-width and length-to-thickness ratios, and in-plane transverse wave number on the parametric resonance particularly the steady-state vibrations amplitude. The present results show good agreement with that available in the literature.  相似文献   

3.
In the static and dynamic analysis of composite laminates, a theory for the laminated plates is presented in this paper. Because the deflection Wb which is caused by the classical bending deformation and the deflection W5 which is caused by the shear deformation are divided from the total deflection W in the theory, this makes it easy to solve the governing equations. In addition, this theory is convenient for the discussion and analysis of the effects of transverse shear deformations on bendings, vibrations and stabilities of laminated plates.  相似文献   

4.
Experimental and theoretical methods are presented to study the first-ply failure strength of laminated composite plates under different loading conditions. An acoustic emission technique is used to measure the energy released in the plates during the failure process. The first-ply failure strength of the plates is then identified via the energy vs load diagrams which are constructed on the basis of the measured acoustic emissions. A finite element analysis, which is constructed on the basis of the layerwise linear displacement theory, and the Tsai–Wu failure criterion are used to predict the first-ply failure strength of the plates. The comparison between the experimental and theoretical results shows good agreement.  相似文献   

5.
A new trigonometric shear deformation theory for isotropic and composite laminated and sandwich plates, is developed. The new displacement field depends on a parameter “m”, whose value is determined so as to give results closest to the 3D elasticity bending solutions. The theory accounts for adequate distribution of the transverse shear strains through the plate thickness and tangential stress-free boundary conditions on the plate boundary surface, thus a shear correction factor is not required. Plate governing equations and boundary conditions are derived by employing the principle of virtual work. The Navier-type exact solutions for static bending analysis are presented for sinusoidally and uniformly distributed loads. The accuracy of the present theory is ascertained by comparing it with various available results in the literature. The results show that the present model performs as good as the Reddy’s and Touratier’s shear deformation theories for analyzing the static behavior of isotropic and composite laminated and sandwich plates.  相似文献   

6.
撞击载荷下泡沫铝夹层板的动力响应   总被引:2,自引:0,他引:2  
应用泡沫金属子弹撞击加载的方式研究了固支方形夹层板和等质量实体板的动力响应,分别应用激光测速装置和位移传感器测量了泡沫子弹的撞击速度和后面板中心点的位移历史,给出了夹层板的变形与失效模式,研究了子弹冲量、面板厚度、泡沫芯层厚度及芯层密度对夹层板抗撞击性能的影响。结果表明,后面板中心点挠度最大,周边最小,整体变形为穹形,且伴有花瓣形的变形。参数研究表明,通过增加面板厚度或芯层厚度均能有效控制后面板的挠度,改善夹层板的能量吸收能力,结构响应对子弹冲量和芯层密度比较敏感。实验结果对多孔金属夹层结构的优化设计具有一定的参考价值。 更多还原  相似文献   

7.
Composite laminates offer superior load carrying capacity. Reliable application of structures requires a knowledge of their stress/strain and failure behavior. past treatments involved assumptions in both the stress and failure analyses; they become increasingly more difficult when the failure of the microstructure constituents is to be included in the continuum analysis of the laminates. Recognizing the conventional failure criteria used for composite material analyses, this work adopts the first-ply failure criterion by application of a polynomial function and the finite element procedure.The laminates are modeled by the Reissner-Mindlin plate theory that accounts for moderate rotation. This is because shear effects are more pronounced in composite laminates whose transverse shear modulus is low relative to the Young's modulus. Failure loads are obtained for different laminate thicknesses, stacking sequences and aspect ratios and different failure criteria. The results show that predictions made from the maximum stress criterion are nearly the same as the others, except for those obtained by the Hill criterion.  相似文献   

8.
In this paper we investigate impact and compression after impact properties of plain weave carbon fiber sandwich composites. Impact tests were conducted on different sample types to obtain information about absorbed energy and maximum impact force. The different samples consisted of foam-filled and hollow honeycomb cores with four-layer carbon fiber facesheets on one or both sides. The impact and compression after impact data provided valuable information to allow for comparisons between the different sample types. Also, the compression after impact tests were conducted in order to determine the reduction in compressive strength when comparing impacted to non-impacted samples. In conclusion, a two-degrees-of-freedom spring/mass model was compared to experimental results. The comparison helped illustrate the limitations of current impact theory. This paper was presented, in part, at a symposium honoring Dr Christian P. Burger, Novel Applications of Experimental Methods in Mechanics, held at the 2003 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, June 2–4, 2003, Charlotte, North Carolina.  相似文献   

9.
This study deals with postbuckling behavior of laminated composite plates under the combination of in-plane shear, compression and lateral loading using an Element-based Lagrangian formulation. Natural co-ordinate-based strains, stresses and constitutive equations are used in the present shell element. The Element-based Lagrangian formulation described in this paper, in comparison with the traditional approaches, is more attractive not only because it uses only single mapping but also it converges faster. In addition, the finite element (FE) formulation based on the assumed natural strain method for composite structures shows excellence from the standpoints of computational efficiency as well as its ability to avoid both membrane and shear locking behavior. The numerical results obtained are in good agreement with those reported by other investigators. In particular, new results reported in this paper show the influence of various types of loading, materials and number of layers on postbuckling behavior.  相似文献   

10.
11.
NONLINEARTHREE-DIMENSIONALANALYSISOFCOMPOSITELAMINATEDPLATES¥(江晓禹,张相周,陈百屏)JiangXiaoyu;(SouthwesternJiaotongUniversity,Chengdu6...  相似文献   

12.
Nonlinear dynamic stability of composite laminated plates   总被引:1,自引:0,他引:1  
Catastrophe theory was applied to the investigation of nonlinear dynamic stability of composite laminated plates. The influence of large deflection, initial imperfection,support conditions and ply-angle of the fibers were considered. The catastrophic models and the critical conditions of dynamic buckling of composite laminated plates are obtained.  相似文献   

13.
Hybrid-stress finite element method is applied for analysis of bending and vibration of composite laminated plates in this paper. Firstly, based on the modified complementary principle, a rectangular hybrid-stress plate bending element is presented which applies to analysis of laminates. Inside the element, different stress parameters are assumed according to different layers. The boundary displacements are determined by means of the assumption of YNS theory on the boundary of elements. The element formed in this way not only can take effects of transverse shear deformation and local warping into account, but also has less degrees of freedom. Then, problems of bending and vibration of laminates are solved by using this element, and the numerical results are compared with the exact solutions. This shows that the results obtained in the paper are very close to the exact results.  相似文献   

14.
This paper addresses the buckling and post-buckling of laminated composite plates using higher order shear deformation theory associated with Green–Lagrange non-linear strain–displacement relationships. All higher order terms arising from nonlinear strain–displacement relations are included in the formulation. The present plate theory satisfies zero transverse shear strain conditions at the top and bottom surfaces of the plate in von Karman sense. A C0 isoparametric finite element is developed for the present nonlinear model.  相似文献   

15.
The dynamic behavior of laminated composite plates undergoing moderately large deflection is investigated by considering the viscoelastic properties of the material. Based on von Karman's nonlinear deformation theory and Boltzmann's superposition principle, nonlinear and hereditary type governing equations are derived through Hamilton's principle. Finite element analysis and the method of multiple scales are applied to examine the effect of large amplitude on the dissipative nature as well as on the natural frequency of viscoelastic laminated plates. Numerical experiments are performed for the nonlinear elastic case and linear viscoelastic case to check the validity of the procedure presented in this paper. Limitations of the method are discussed also. It is shown that the geometric nonlinearity does not affect the dissipative characteristics in the cases that have nonlinearity of perturbed order.  相似文献   

16.
17.
An efficient numerical method is developed for the simulation of three dimensional transient dynamic response in thick laminated composite and sandwich plate structures involving very high frequencies and wave numbers. The proposed method incorporates Daubechies wavelet scaling functions for the interpolation of the in-plane displacements with a Galerkin formulation. It further explores the orthonormality and compact support of wavelet scaling functions to produce near diagonal consistent mass matrices and banded stiffness matrices. Hence, an uncoupled equivalent discrete spatial dynamic system is formulated, synthesized and rapidly solved in the wavelet domain using an explicit time integration scheme. The in-plane wavelet interpolation is further combined with an efficient high order layerwise laminate plate theory, that implements Hermite cubic splines for the through-the-thickness approximation of displacement fields. Numerical results are presented on the prediction of guided waves in laminated and thick sandwich composite plates and compared with respective solutions obtained by analytical, semi-analytical and time domain spectral element models. The method yielded higher convergence rates and substantial reductions in computational effort compared to respective time domain spectral finite elements.  相似文献   

18.
The vibration and buckling characteristics of sandwich plates having laminated stiff layers are studied for different degrees of imperfections at the layer interfaces using a refined plate theory. With this plate theory, the through thickness variation of transverse shear stresses is represented by piece-wise parabolic functions where the continuity of these stresses is satisfied at the layer interfaces by taking jumps in the transverse shear strains at the interfaces. The transverse shear stresses free condition at the plate top and bottom surfaces is also satisfied. The inter-laminar imperfections are represented by in-plane displacement jumps at the layer interfaces and characterized by a linear spring layer model. It is quite interesting to note that this plate model having all these refined features requires unknowns only at the reference plane. To have generality in the analysis, finite element technique is adopted and it is carried out with a new triangular element developed for this purpose, as any existing element cannot model this plate model. As there is no published result on imperfect sandwich plates, the problems of perfect sandwich plates and imperfect ordinary laminates are used for validation.  相似文献   

19.
Constitutive laws are presented for the inelastic analysis of laminated composite plates. The implications of using an elastoplastic theory, applied in a stress-resultant formulation, are discussed and investigated. Two different stress-resultant plasticity theories are proposed, both of which overlook the matrix and fiber inelastic behavior and describe the inelastic response of the laminate as a function of overall laminate properties. Results from numerical experiments with the proposed models are compared with results obtained using a micromechanical elastoplastic composite constitutive model.  相似文献   

20.
Multiobjective design and control optimization of composite laminated plates is presented to minimize the postbuckling dynamic response and maximize the buckling load. The control objective aims at dissipating the postbuckling elastic energy of the laminate with the minimum possible expenditure of control energy using a closed-loop distributed force. The layer thicknesses and fiber orientations are taken as design variables. The objectives of the optimization problem are formulated based on a shear deformation theory including the von-Karman non-linear effect for various cases of boundary conditions. The non-linear control problem is solved iteratively until an appropriate convergence criterion is satisfied based on Liapunov–Bellman theory. Liapunov function is taken as a sum of positive definite functions with different degrees. Comparative examples for three-layer symmetric and four-layer antisymmetric laminates are given for various cases of edges conditions. Graphical study is carried out to assess the accuracy of results obtained due to the successive iterations. The influences of the boundary conditions, orthotropy ratio, shear deformation, aspect ratio on the laminate optimal design are elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号