首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two hydrated hydroxy magnesium carbonate minerals brugnatellite and coalingite with a hydrotalcite‐like structure were studied by Raman spectroscopy. Intense bands are observed at 1094 cm−1 for brugnatellite and at 1093 cm−1 for coalingite attributed to the CO32−ν1 symmetric stretching mode. Additional low intensity bands are observed at 1064 cm−1. The existence of two symmetric stretching modes is accounted for in terms of different anion structural arrangements. Very low intensity bands at 1377 and 1451 cm−1 are observed for brugnatellite, and the Raman spectrum of coalingite displays two bands at 1420 and 1465 cm−1 attributed to the (CO3)2−ν3 antisymmetric stretching modes. Very low intensity bands at 792 cm−1 for brugnatellite and 797 cm−1 for coalingite are assigned to the CO32− out‐of‐plane bend (ν2). X‐ray diffraction studies by other researchers have shown that these minerals are disordered. This is reflected in the difficulty of obtaining Raman spectra of reasonable quality and explains why the Raman spectra of these minerals have not been previously or sufficiently described. A comparison is made with the Raman spectra of other hydrated magnesium carbonate minerals. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Magnesium minerals are important in the understanding of the concept of geosequestration. The two hydrated hydroxy magnesium‐carbonate minerals artinite and dypingite were studied by Raman spectroscopy. Intense bands are observed at 1092 cm−1 for artinite and at 1120 cm−1 for dypingite, attributed ν1 symmetric stretching mode of CO32−. The ν3 antisymmetric stretching vibrations of CO32− are extremely weak and are observed at 1412 and 1465 cm−1 for artinite and at 1366, 1447 and 1524 cm−1 for dypingite. Very weak Raman bands at 790 cm−1 for artinite and 800 cm−1 for dypingite are assigned to the CO32−ν2 out‐of‐plane bend. The Raman band at 700 cm−1 of artinite and at 725 and 760 cm−1 of dypingite are ascribed to CO32−ν2 in‐plane bending mode. The Raman spectrum of artinite in the OH stretching region is characterised by two sets of bands: (1) an intense band at 3593 cm−1 assigned to the MgOH stretching vibrations and (2) the broad profile of overlapping bands at 3030 and 3229 cm−1 attributed to water stretching vibrations. X‐ray diffraction studies show that the minerals are disordered. This is reflected in the difficulty of obtaining Raman spectra of reasonable quality, and explains why the Raman spectra of these minerals have not been previously or sufficiently described. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Raman spectra of brandholzite Mg[Sb2(OH)12]·6H2O were studied, complemented with infrared spectra, and related to the structure of the mineral. An intense Raman sharp band at 618 cm−1 is attributed to the SbO symmetric stretching mode. The low‐intensity band at 730 cm−1 is ascribed to the SbO antisymmetric stretching vibration. Low‐intensity Raman bands were found at 503, 526 and 578 cm−1. Corresponding infrared bands were observed at 527, 600, 637, 693, 741 and 788 cm−1. Four Raman bands observed at 1043, 1092, 1160 and 1189 cm−1 and eight infrared bands at 963, 1027, 1055, 1075, 1108, 1128, 1156 and 1196 cm−1 are assigned to δ SbOH deformation modes. A complex pattern resulting from the overlapping band of the water and hydroxyl units is observed. Raman bands are observed at 3240, 3383, 3466, 3483 and 3552 cm−1; infrared bands at 3248, 3434 and 3565 cm−1. The Raman bands at 3240 and 3383 cm−1 and the infrared band at 3248 cm−1 are assigned to water‐stretching vibrations. The two higher wavenumber Raman bands observed at 3466 and 3552 cm−1 and two infrared bands at 3434 and 3565 cm−1 are assigned to the stretching vibrations of the hydroxyl units. Observed Raman and infrared bands in the OH stretching region are associated with O‐H···O hydrogen bonds and their lengths 2.72, 2.79, 2.86, 2.88 and 3.0 Å (Raman) and 2.73, 2.83 and 3.07 Å (infrared). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Raman spectroscopy was used to study the mineral bottinoite and a comparison with the Raman spectra of brandholzite was made. An intense sharp Raman band at 618 cm−1 is attributed to the SbO symmetric stretching mode. The low intensity band at 735 cm−1 is ascribed to the SbO antisymmetric stretching vibration. Low intensity Raman bands were found at 501, 516 and 578 cm−1. Four Raman bands observed at 1045, 1080, 1111 and 1163 cm−1 are assigned to δ SbOH deformation modes. A complex pattern resulting from the overlapping band of the water and hydroxyl units is observed. Raman bands are observed at 3223, 3228, 3368, 3291, 3458 and 3510 cm−1. The first two Raman bands are assigned to water stretching vibrations. The two higher wavenumber Raman bands observed at 3466 and 3552 cm−1 and two infrared bands at 3434 and 3565 cm−1 are assigned to the stretching vibrations of the hydroxyl units. Observed Raman and infrared bands are connected with O H···O hydrogen bonds and their lengths 2.72, 2.79, 2.86, 2.88 and 3.0 Å (Raman) and 2.73, 2.83 and 3.07 Å (infrared). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Raman spectra of the uranyl oxyhydroxy‐hydrated mineral compreignacite, K2[(UO2)3O2(OH)3]2·7H2O, were measured and interpreted. Observed bands were attributed to the stretching and bending vibrations of uranyl units, molecular water and hydroxyl ions. U O bond lengths in uranyl and O HO hydrogen bond lengths were inferred from the spectra and compared with those from the X‐ray single crystal structure data. The importance of this spectroscopic study rests with the ability to analyze very small amounts of the mineral. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Raman spectra of dumontite were measured at 298 and 77 K. Observed bands were attributed to the stretching and bending vibrations of uranyl and phosphate units and OH stretching vibrations of water molecules. U–O bond lengths in uranyls and approximate O–H···O bond lengths were calculated. The values of the U–O bond lengths are in agreement with the data from the single crystal structure analysis of dumontite. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Raman spectra of pseudojohannite were studied and related to the structure of the mineral. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (SO4)2− units and of water molecules. The published formula of pseudojohannite is Cu6.5(UO2)8[O8](OH)5[(SO4)4]·25H2O. Raman bands at 805 and 810 cm−1 are assigned to (UO2)2+ stretching modes. The Raman bands at 1017 and 1100 cm−1 are assigned to the (SO4)2− symmetric and antisymmetric stretching vibrations. The three Raman bands at 423, 465 and 496 cm−1 are assigned to the (SO4)2−ν2 bending modes. The bands at 210 and 279 cm−1 are assigned to the doubly degenerate ν2 bending vibration of the (UO2)2+ units. U O bond lengths in uranyl and O H···O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Raman spectroscopy has been used to study the arsenate minerals haidingerite Ca(AsO3OH)·H2O and brassite Mg(AsO3OH)·4H2O. Intense Raman bands in the haidingerite spectrum observed at 745 and 855 cm−1 are assigned to the (AsO3OH)2−ν3 antisymmetric stretching and ν1 symmetric stretching vibrational modes. For brassite, two similarly assigned intense bands are found at 809 and 862 cm−1. The observation of multiple Raman bands in the (AsO3OH)2− stretching and bending regions suggests that the arsenate tetrahedrons in the crystal structures of both minerals studied are strongly distorted. Broad Raman bands observed at 2842 cm−1 for haidingerite and 3035 cm−1 for brassite indicate strong hydrogen bonding of water molecules in the structure of these minerals. OH···O hydrogen‐bond lengths were calculated from the Raman spectra based on empirical relations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The mixed anion mineral parnauite Cu9[(OH)10|SO4|(AsO4)2]·7H2O has been studied by Raman spectroscopy. Characteristic bands associated with arsenate, sulphate and hydroxyl units are identified. Broad bands are observed and are resolved into component bands. Two intense bands at 859 and 830 cm−1 are assigned to the ν1 (AsO4)3− symmetric stretching and ν3 (AsO4)3− antisymmetric stretching modes. The comparatively sharp band at 976 cm−1 is assigned to the ν1 (SO4)2− symmetric stretching mode and a broad‐spectral profile centered upon 1097 cm−1 is attributed to the ν3 (SO4)2− antisymmetric stretching mode. A comparison of the Raman spectra is made with other arsenate‐bearing minerals such as carminite, clinotyrolite, kankite, tilasite and pharmacosiderite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The Raman spectrum of the mineral guilleminite Ba[(UO2)3O2(SeO3)2](H2O)3 was studied and complemented by the infrared spectrum of this mineral. Both spectra were interpreted and compared with the spectra of marthozite, larisaite, haynesite and piretite, all of which should have the same phosphuranylite anion sheet topology. The presence of symmetrically distinct water molecules and hydrogen bonds was inferred from the spectra. This is in agreement with the crystal structural analysis of guilleminite. U O bond lengths in uranyl and O H···O hydrogen bond lengths were calculated from the Raman and/or infrared spectra of guilleminite. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Raman spectra of metauranospinite Ca[(UO2)(AsO4)]2·8H2O complemented with infrared spectra were studied. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (AsO4)3− units and of water molecules. U O bond lengths in uranyl and O H···O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The mineral marthozite, a uranyl selenite, has been characterised by Raman spectroscopy at 298 K. The bands at 812 and 797 cm−1 were assigned to the symmetric stretching modes of the (UO2)2+ and (SeO3)2− units, respectively. These values gave the calculated U O bond lengths in uranyl of 1.799 and/or 1.814 Å. Average U O bond length in uranyl is 1.795 Å, inferred from the X‐ray single crystal structure analysis of marthozite by Cooper and Hawthorne. The broad band at 869 cm−1 was assigned to the ν3 antisymmetric stretching mode of the (UO2)2+ (calculated U O bond length 1.808 Å). The band at 739 cm−1 was attributed to the ν3 antisymmetric stretching vibration of the (SeO3)2− units. The ν4 and the ν2 vibrational modes of the (SeO3)2− units were observed at 424 and 473 cm−1. Bands observed at 257, and 199 and 139 cm−1 were assigned to OUO bending vibrations and lattice vibrations, respectively. O H···O hydrogen bond lengths were inferred using Libowiztky's empirical relation. The infrared spectrum of marthozite was studied for complementation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Insight into the unique structure of hydrotalcites has been obtained using Raman spectroscopy. Gallium‐containing hydrotalcites of formula Mg4Ga2(CO3)(OH)12· 4H2O (2:1 Ga‐HT) to Mg8Ga2(CO3)(OH)20· 4H2O (4:1 Ga‐HT) have been successfully synthesized and characterized by X‐ray diffraction and Raman spectroscopy. The d(003) spacing varied from 7.83 Å for the 2:1 hydrotalcite to 8.15 Å for the 3:1 gallium‐containing hydrotalcite. Raman spectroscopy complemented with selected infrared data has been used to characterize the synthesized gallium‐containing hydrotalcites of formula Mg6Ga2(CO3)(OH)16· 4H2O. Raman bands observed at around 1046, 1048 and 1058 cm−1 are attributed to the symmetric stretching modes of the CO32− units. Multiple ν3 CO32− antisymmetric stretching modes are found at around 1346, 1378, 1446, 1464 and 1494 cm−1. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands observed at 710 and 717 cm−1 assigned to the ν4 (CO32−) modes support the concept of multiple carbonate species in the interlayer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The mixed anion mineral chalcophyllite Cu18Al2(AsO4)4(SO4)3(OH)24·36H2O has been studied by using Raman and infrared spectroscopies. Characteristic bands associated with arsenate, sulfate and hydroxyl units are identified. Broad bands in the OH stretching region are observed and are resolved into component bands. Estimates of hydrogen bond distances were made using a Libowitzky function. Both short and long hydrogen bonds were identified. Two intense bands at 841 and ∼814 cm−1 are assigned to the ν1 (AsO4)3− symmetric stretching and ν3 (AsO4)3− antisymmetric stretching modes. The comparatively sharp band at 980 cm−1 is assigned to the ν1 (SO4)2− symmetric stretching mode, and a broad spectral profile centred upon 1100 cm−1 is attributed to the ν3 (SO4)2− antisymmetric stretching mode. A comparison of the Raman spectra is made with other arsenate‐bearing minerals such as carminite, clinotyrolite, kankite, tilasite and pharmacosiderite. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Tellurates are rare minerals as the tellurate anion is readily reduced to the tellurite ion. Often minerals with both tellurate and tellurite anions are found. An example of such a mineral containing tellurate and tellurite is yecoraite. Raman spectroscopy has been used to study this mineral, the exact structure of which is unknown. Two Raman bands at 796 and 808 cm−1 are assigned to the ν1(TeO4)2− symmetric and ν3(TeO3)2− antisymmetric stretching modes and Raman bands at 699 cm−1 are attributed to the ν3(TeO4)2− antisymmetric stretching mode and the band at 690 cm−1 to the ν1(TeO3)2− symmetric stretching mode. The intense band at 465 cm−1 with a shoulder at 470 cm−1 is assigned the (TeO4)2− and (TeO3)2− bending modes. Prominent Raman bands are observed at 2878, 2936, 3180 and 3400 cm−1. The band at 3936 cm−1 appears quite distinct and the observation of multiple bands indicates the water molecules in the yecoraite structure are not equivalent. The values for the OH stretching vibrations listed provide hydrogen bond distances of 2.625 Å (2878 cm−1), 2.636 Å (2936 cm−1), 2.697 Å (3180 cm−1) and 2.798 Å (3400 cm−1). This range of hydrogen bonding contributes to the stability of the mineral. A comparison of the Raman spectra of yecoraite with that of tellurate containing minerals kuranakhite, tlapallite and xocomecatlite is made. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Selenites and tellurites may be subdivided according to formula and structure. There are five groups, based upon the formulae (a) A(XO3), (b) A(XO3·) xH2O, (c) A2(XO3)3·xH2O, (d) A2(X2O5) and (e) A(X3O8). Of the selenites, molybdomenite is an example of type (a); chalcomenite, clinochalcomenite, cobaltomenite and ahlfeldite are minerals of type (b); mandarinoite Fe2Se3O9·6H2O is an example of type (c). Raman spectroscopy has been used to characterise the mineral mandarinoite. The intense, sharp band at 814 cm−1 is assigned to the symmetric stretching (Se3O9)6− units. Three Raman bands observed at 695, 723 and 744 cm−1 are attributed to the ν3 (Se3O9)6− anti‐symmetric stretching modes. Raman bands at 355, 398 and 474 cm−1 are assigned to the ν4 and ν2 bending modes. Raman bands are observed at 2796, 2926, 3046, 3189 and 3507 cm−1 and are assigned to OH stretching vibrations. The observation of multiple OH stretching vibrations suggests the non‐equivalence of water in the mandarinoite structure. The use of the Libowitzky empirical function provides hydrogen bond distances of 2.633(9) Å (2926 cm−1), 2.660(0) Å (3046 cm−1), 2.700(0) Å (3189 cm−1) and 2.905(3) Å (3507 cm−1). The sharp, intense band at 3507 cm−1 may be due to hydroxyl units. It is probable that some of the selenite units have been replaced by hydroxyl units. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Raman spectroscopy has been used to study the selenite mineral ahlfeldite. A comparison is made with the Raman spectra of chalcomenite, cobaltomenite and clinochalcomenite. Selenite minerals are characterised by the position of the symmetric stretching mode which is observed at higher wavenumbers than the anti‐symmetric stretching mode. The selenite ion has C3v symmetry and four modes, 2A1 and 2E. These modes are observed at 813, 472 cm−1 (A1) and 685, 710, 727 and 367 and 396 cm−1 (E). Bands assigned to the water stretching vibrations are observed for ahlfeldite at 3385 cm−1, for chalcomenite at 2953, 3184 and 3506 cm−1 and for clinochalcomenite at 2909, 3193 and 3507 cm−1. A comparison of the Raman spectra of chalcomenite, clinochalcomenite and cobaltomenite is made. The position of these bands enabled hydrogen bond distances in the selenite structure to be estimated. Hydrogen bond distances for ahlfeldite, chalcomenite and clinochalcomenite were determined to be similar. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Raman and infrared spectroscopies were used to characterise two samples of triclinic čejkaite Na4[UO2(CO3)3] and its synthetic trigonal analogue. The ν3 (UO2)2+ mode is not Raman active, whereas both the ν3 and ν1 (UO2)2+ modes are infrared active. U O bond lengths in uranyls were calculated from the spectra obtained and compared with bond lengths derived from crystal structure analyses. From the higher number of bands related to the uranyl and carbonate vibrations, the presence of symmetrically distinct (UO2)2+ and (CO3)2− units in both structures is proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The mineral ardealite Ca2(HPO4)(SO4)·4H2O is a ‘cave’ mineral and is formed through the reaction of calcite with bat guano. The mineral shows disorder and the composition varies depending on the origin of the mineral. Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the mineral ardealite. The Raman spectrum is very different from that of gypsum. Bands are assigned to SO42− and HPO42− stretching and bending modes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
We have successfully synthesised hydrotalcites (HTs) containing calcium, which are naturally occurring minerals. Insight into the unique structure of HTs has been obtained using a combination of X‐ray diffraction (XRD) as well as infrared and Raman spectroscopies. Calcium‐containing hydrotalcites (Ca‐HTs) of the formula Ca4Al2(CO3)(OH)12·4H2O (2:1 Ca‐HT) to Ca8Al2(CO3)(OH)20· 4H2O (4:1 Ca‐HT) have been successfully synthesised and characterised by XRD and Raman spectroscopy. XRD has shown that 3:1 calcium HTs have the largest interlayer distance. Raman spectroscopy complemented with selected infrared data has been used to characterise the synthesised Ca‐HTs. The Raman bands observed at around 1086 and 1077 cm−1 were attributed to the ν1 symmetric stretching modes of the (CO32−) units of calcite and carbonate intercalated into the HT interlayer. The corresponding ν3 CO32− antisymmetric stretching modes are found at around 1410 and 1475 cm−1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号