首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
To interpolate function, f(x), a ? x ? b, when we have some information about the values of f(x) and their derivatives in separate points on {x0, x1,  , xn} ? [a, b], the Hermit interpolation method is usually used. Here, to solve this kind of problems, extended rational interpolation method is presented and it is shown that the suggested method is more efficient and suitable than the Hermit interpolation method, especially when the function f(x) has singular points in interval [a, b]. Also for implementing the extended rational interpolation method, the direct method and the inverse differences method are presented, and with some examples these arguments are examined numerically.  相似文献   

2.
《Journal of Complexity》1996,12(2):167-174
LetKbe a closed basic set inRngiven by the polynomial inequalities φ1≥ 0, . . . , φm≥ 0 and let Σ be the semiring generated by the φkand the squares inR[x1, . . . ,xn]. Schmüdgen has shown that ifKis compact then any polynomial function strictly positive onKbelongs to Σ. Easy consequences are (1)f≥ 0 onKif and only iffR++ Σ (Positivstellensatz) and (2) iff≥ 0 onKbutf∈ Σ then asdtends to 0+, in any representation off + das an element of Σ in terms of the φk, the squares and semiring operations, the integerN(d) which is the minimum over all representations of the maximum degree of the summands must become arbitrarily large. A one-dimensional example is analyzed to obtain asymptotic lower and upper bounds of the formcd−1/2N(d) ≤Cd−1/2log (1/d).  相似文献   

3.
《Journal of Algebra》2002,247(2):509-540
Let Fm be a free group of a finite rank m  2 and let Xi, Yj be elements in Fm. A non-empty word w(x1,…,xn) is called a C-test word in n letters for Fm if, whenever (X1,…,Xn) = w(Y1,…,Yn)  1, the two n-typles (X1,…,Xn) and (Y1,…,Yn) are conjugate in Fm. In this paper we construct, for each n  2, a C-test word vn(x1,…,xn) with the additional property that vn(X1,…,Xn) = 1 if and only if the subgroup of Fm generated by X1,…,Xn is cyclic. Making use of such words vm(x1,…,xm) and vm + 1(x1,…,xm + 1), we provide a positive solution to the following problem raised by Shpilrain: There exist two elements u1, u2  Fm such that every endomorphism ψ of Fm with non-cyclic image is completely determined by ψ(u1), ψ(u2).  相似文献   

4.
5.
Let Ay = f, A is a linear operator in a Hilbert space H, y  N(A)  {u : Au = 0}, R(A)  {h : h = Au, u  D(A)} is not closed, ∥fδ  f  δ. Given fδ, one wants to construct uδ such that limδ→0uδ  y = 0. Two versions of discrepancy principles for the DSM (dynamical systems method) for finding the stopping time and calculating the stable solution uδ to the original equation Ay = f are formulated and mathematically justified.  相似文献   

6.
LetK 1,…Kn be convex sets inR d. For 0≦i denote byf ithe number of subsetsS of {1,2,…,n} of cardinalityi+1 that satisfy ∩{K i∶i∈S}≠Ø. We prove:Theorem.If f d+r=0 for somer r>=0, then {fx161-1} This inequality was conjectured by Katchalski and Perles. Equality holds, e.g., ifK 1=…=Kr=Rd andK r+1,…,Kn aren?r hyperplanes in general position inR d. The proof uses multilinear techniques (exterior algebra). Applications to convexity and to extremal set theory are given.  相似文献   

7.
《Journal of Algebra》2002,247(2):467-508
In this paper we shall generalize the notion of an integral on a Hopf algebra introduced by Sweedler, by defining the more general concept of an integral of a threetuple (H, A, C), where H is a Hopf algebra coacting on an algebra A and acting on a coalgebra C. We prove that there exists a total integral γ: C  Hom(C, A) of (H, A, C) if and only if any representation of (H, A, C) is injective in a functorial way, as a corepresentation of C. In particular, the quantum integrals associated to Yetter–Drinfel'd modules are defined. Let now A be an H-bicomodule algebra, HYDA the category of quantum Yetter–Drinfel'd modules, and B = {a  A|∑S 1(a〈1〉)a  1〉  a〈0〉 = 1H  a}, the subalgebra of coinvariants of the Verma structure A  HYDA. We shall prove the following affineness criterion: if there exists γ: H  Hom(H, A) a total quantum integral and the canonical map β: A  B A  H  A, β(a  B b) = S 1(b〈1〉)b  1〉  ab〈0〉 is surjective (i.e., A/B is a quantum homogeneous space), then the induction functor –  B A: MB  HYDA is an equivalence of categories. The affineness criteria proven by Cline, Parshall, and Scott, and independently by Oberst (for affine algebraic groups schemes) and Schneider (in the noncommutative case), are recovered as special cases.  相似文献   

8.
9.
We study aC functional calculus with several variables forv pseudodifferential operatorsP 1, …,P v inR n . Whenf is a function belonging to the classS 1.0 r (R v ) of Hörmander, we prove that, under some conditions,f(P 1,…,P v) is a pseudodifferential operator, and we give an asymptotic formula for its symbol.  相似文献   

10.
In this paper, we study the nonlinear dispersive K(m, n) equations: ut + (um)x  (un)xxx = 0 which exhibit solutions with solitary patterns. New exact solitary solutions are found. The two special cases, K(2, 2) and K(3, 3), are chosen to illustrate the concrete features of the decomposition method in K(m, n) equations. The nonlinear equations K(m, n) are studied for two different cases, namely when m = n being odd and even integers. General formulas for the solutions of K(m, n) equations are established.  相似文献   

11.
Let Ks(R) be the generalized matrix ring over a ring R with multiplier s. For a general local ring R and a central element s in the Jacobson radical of R, necessary and sufficient conditions are obtained for Ks(R) to be a strongly clean ring. For a commutative local ring R and an arbitrary element s in R, criteria are obtained for a single element of Ks(R) to be strongly clean and, respectively, for the ring Ks(R) to be strongly clean. Specializing to s = 1 yields some known results. New families of strongly clean rings are presented.  相似文献   

12.
The support of an [n, k] linear code C over a finite field Fq is the set of all coordinate positions such that at least one codeword has a nonzero entry in each of these coordinate position. The rth generalized Hamming weight dr(C), 1  r  k, of C is defined as the minimum of the cardinalities of the supports of all [n, r] subcodes of C. The sequence (d1(C), d2(C),  , dk(C)) is called the Hamming weight hierarchy (HWH) of C. The HWH, dr(C) = n  k + r;  r = 1, 2 , …, k, characterizes maximum distance separable (MDS) codes. Therefore the matrix characterization of MDS codes is also the characterization of codes with the HWH dr(C) = n  k + r; r = 1, 2,  , k. A linear code C with systematic check matrix [IP], where I is the (n  k) × (n  k) identity matrix and P is a (n  k) × k matrix, is MDS iff every square submatrix of P is nonsingular. In this paper we extend this characterization to linear codes with arbitrary HWH. Using this result, we characterize Near-MDS codes, Near-Near-MDS (N2-MDS) codes and Aμ-MDS codes. The MDS-rank of C is the smallest integer η such that dη+1 = n  k + η + 1 and the defect vector of C with MDS-rank η is defined as the ordered set {μ1(C), μ2(C), μ3(C),  , μη(C), μη+1(C)}, where μi(C) = n  k + i  di(C). We call C a dually defective code if the defect vector of the code and its dual are the same. We also discuss matrix characterization of dually defective codes. Further, the codes meeting the generalized Greismer bound are characterized in terms of their generator matrix. The HWH of dually defective codes meeting the generalized Greismer bound are also reported.  相似文献   

13.
The nonlinear dispersive K(m, n) equations, ut−(um)x−(un)xxx = 0 which exhibit compactons: solitons with compact support, are studied. New exact solitary solutions with compact support are found. The two special cases, K(2, 2) and K(3, 3), are chosen to illustrate the concrete features of the decomposition method in K(m, n) equations. General formulas for the solutions of K(m, n) equations are established.  相似文献   

14.
Let n  1 be a fixed integer and let R be an (n + 1)!-torsion free 1-ring with identity element e. If F, d:R  R are two additive mappings satisfying F(xn+1) = F(x)(x1)n + xd(x)(x1)n−1 + x2d(x)(x1)n−2+  +xnd(x) for all x  R, then d is a Jordan 1-derivation and F is a generalized Jordan 1-derivation on R.  相似文献   

15.
By means of a generalized method and symbolic computation, we consider a stochastic KdV equation Ut + f(t)U  Ux + g(t)Uxxx = W(t)  R(t, U, Ux, Uxxx). We construct new and more general formal solutions. At the same time, we recover all the solutions found by Xie [Phys. Lett. A 310 (2003) 161]. The solutions obtained include the nontravelling wave and coefficient function’s stochastic soliton-like solutions, singular stochastic soliton-like solutions, stochastic triangular functions solutions.  相似文献   

16.
Asma Ali  Faiza Shujat 《代数通讯》2013,41(9):3699-3707
Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from 2, U the right Utumi quotient ring of R, f(x 1,…, x n ) a noncentral multilinear polynomial over K, and G a nonzero generalized derivation of R. Denote f(R) the set of all evaluations of the polynomial f(x 1,…, x n ) in R. If [G(u)u, G(v)v] = 0, for any u, v ∈ f(R), we prove that there exists c ∈ U such that G(x) = cx, for all x ∈ R and one of the following holds: 1. f(x 1,…, x n )2 is central valued on R;

2. R satisfies s 4, the standard identity of degree 4.

  相似文献   

17.
Let q be a pattern and let Sn, q(c) be the number of n-permutations having exactly c copies of q. We investigate when the sequence (Sn, q(c))c  0 has internal zeros. If q is a monotone pattern it turns out that, except for q = 12 or 21, the nontrivial sequences (those where n is at least the length of q) always have internal zeros. For the pattern q = 1(l + 1)l…2 there are infinitely many sequences which contain internal zeros and when l = 2 there are also infinitely many which do not. In the latter case, the only possible places for internal zeros are the next-to-last or the second-to-last positions. Note that by symmetry this completely determines the existence of internal zeros for all patterns of length at most 3.  相似文献   

18.
LetS m andS denote the unit spheres inR m+1 ande 2, respectively. We look for functionsf inC[?1, 1] such that the family of functionsxf(<s,v>) is fundamental in the spaceC(S m). Herev runs overS m. There is a similar question forC(S ), when this space is given the topology of uniform convergence on compact sets.  相似文献   

19.
20.
In this paper the statistical properties of nucleotides in human chromosomes 21 and 22 are investigated. The n-tuple Zipf analysis with n = 3, 4, 5, 6, and 7 is used in our investigation. It is found that the most common n-tuples are those which consist only of adenine (A) and thymine (T), and the rarest n-tuples are those in which GC or CG pattern appears twice. With the n-tuples become more and more frequent, the double GC or CG pattern becomes a single GC or CG pattern. The percentage of four nucleotides in the rarest ten and the most common ten n-tuples are also considered in human chromosomes 21 and 22, and different behaviors are found in the percentage of four nucleotides. Frequency of appearance of n-tuple f(r) as a function of rank r is also examined. We find the n-tuple Zipf plot shows a power-law behavior for r < 4n−1 and a rapid decrease for r > 4n−1. In order to explore the interior statistical properties of human chromosomes 21 and 22 in detail, we divide the chromosome sequence into some moving windows and we discuss the percentage of ξη (ξ, η = A, C, G, T) pair in those moving windows. In some particular regions, there are some obvious changes in the percentage of ξη pair, and there maybe exist functional differences. The normalized number of repeats N0(l) can be described by a power law: N0(l)  lμ. The distance distributions P0(S) between two nucleotides in human chromosomes 21 and 22 are also discussed. A two-order polynomial fit exists in those distance distributions: log P0(S) = a + bS + cS2, and it is quite different from the random sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号