共查询到17条相似文献,搜索用时 0 毫秒
1.
We report observations of single‐molecule detection of thionine and its dynamic interactions on aggregated gold nanoparticle clusters using surface enhanced Raman scattering (SERS). Spectral intensities were found to be independent of the size of Au nanoparticles studied (from 17 to 80 nm) at thionine concentration below 10−12 M or at single‐molecule concentration levels. Raman line separations and, in particular, spectral fluctuations and blinking were also observed, suggesting temporal changes in single molecular motion and/or arrangements of thionine on Au nanoparticle surfaces. In contrast, by using dispersed Au nanoparticles, only ensemble SERS spectra could be observed at relatively high concentrations (> 10−8 M thionine), and spectral intensities varied with the size of Au nanoparticles. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
2.
Luca Guerrini Jos V. Garcia‐Ramos Concepcin Domingo Santiago Sanchez‐Cortes 《Journal of Raman spectroscopy : JRS》2010,41(5):508-515
Surface‐enhanced Raman scattering (SERS) is an extremely powerful tool for the analysis of the composition of bimetallic nanoparticle (BNP) surfaces because of the different adsorption schemes adopted by several molecules on different metals, such as Au and Ag. The preparation of BNPs normally implies a change in the plasmonic properties of the core metal. However, for technological applications it could be interesting to synthesize core–shell structures preserving these original plasmonic properties. In this work, we present a facile method for coating colloidal gold nanoparticles (NPs) in solution with a very thin shell of silver. The resulting bimetallic Au@Ag system maintains the optical properties of gold but shows the chemical surface affinity of silver. The effectiveness of the coating method, as well as the progressive silver enrichment of the outermost part of the Au NPs, has been monitored through the SERS spectra of several species (chloride, luteolin, thiophenol and lucigenin), which show different behaviors on gold and silver surfaces. A growth mechanism of the Ag shell is proposed on the basis of the spectroscopic and microscopic data consisting in the formation and deposit of Ag clusters on the Au NP surface. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
3.
Here we report the synthesis of 2–5 nm size gold nanoparticle labels for surface‐enhanced Raman Spectroscopy (SERS) based immunoassay to detect protein molecules. The Au nanoparticles were conjugated with fluorescein isothiocyanate (FITC) and goat anti‐h‐IgG (immunoglobin) and the resultant particles were used for the detection of h‐IgG. Commercially available nitrocellulose strip and silver enhancement method were used for SERS‐based immunoassays. The FITC acts as a Raman probe, and vibrational fingerprint of this molecule was used for the detection of h‐IgG in concentration ranging from 1 to 100 ng/µl. Our Raman probe is robust and small in size and has high water solubility with minimum steric effect during antigen–antibody binding. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
4.
Kuan Soo Shin 《Journal of Raman spectroscopy : JRS》2008,39(4):468-473
The substrate‐dependent surface‐enhanced Raman scattering (SERS) of 4‐aminobenzenethiol (4‐ABT) adsorbed on Au surfaces has been investigated. 4‐ABT is one of the very unique adsorbate molecules whose SERS spectral patterns are known to be noticeably dependent on the relative contribution of chemical enhancement mechanism vs electromagnetic enhancement mechanism. The SERS spectral patterns of 4‐ABT adsorbed on gold substrates with various surface morphology have thus been analyzed in terms of the symmetry types of the vibrational modes. Almost invisibly weak b2 type vibrational bands were observed in the SERS spectra of the 4‐ABT adsorbed on Au colloidal sol nanoparticles or commercially available Au micro‐powders because of the weak contribution of the chemical enhancement. However, greatly enhanced b2 vibrational bands were observed in the spectra of the 4‐ABT molecules adsorbed on the synthesized Au(Zn) sponge or the electrochemically roughened Au(ORC) foil caused by the strong contribution of the chemical enhancement mechanism. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
5.
Anisotropic metallic nanoparticles (NPs) have unique optical properties, which lend them to applications such as surface‐enhanced Raman scattering (SERS) spectroscopy. Star‐shaped gold (Au) NPs were prepared in aqueous solutions by the seed‐mediated growth method and tested for Raman enhancement using 2‐mercaptopyridine (2‐MPy) and crystal violet (CV) probing molecules. For both molecules, the SERS activity of the nanostars was notably stronger than that of the spherical Au NPs of similar size. The Raman enhancement factors (EFs) for 2‐MPy on Au nanostars and nanorods are comparable and estimated as greater than 5 orders of magnitude. However, the enhancement for CV on nanostars was significantly higher than for nanorods, in particular at CV concentrations of 100 nM or lower. This article is a US Government work and is in the public domain in the USA. Published in 2008 by John Wiley & Sons, Ltd. 相似文献
6.
S. Cînt Pînzaru L. M. Andronie I. Domsa O. Cozar S. Astilean 《Journal of Raman spectroscopy : JRS》2008,39(3):331-334
In order to get insight into the chemical heterogeneities of solid tumors, here we report the first surface‐enhanced Raman scattering (SERS) experiment from normal and altered epithelial layer in human colon carcinoma tissues. The Ag colloidal nanoparticles that can be incorporated into the interstitial space in solid tumors or those penetrating into cytoplasm or nucleus of many cells allowed high quality SERS signal. Different tissue structures of tumor and normal colon have characteristic features in SERS spectra. Prominent SERS features of malignant tissue spectra are related to the strong enhancement of the bands preponderantly attributable to DNA or RNA bases. The preliminary studies demonstrate that it is possible to probe Ag colloidal nanoparticles adsorption onto the tissue resulting in a strong molecular signaling with high specificity and rapid acquisition time using visible laser line excitation. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
7.
Chung‐Chin Yu Yu‐Chuan Liu Kuang‐Hsuan Yang Hui‐Yen Tsai 《Journal of Raman spectroscopy : JRS》2011,42(4):621-625
We report here, for the first time, a simple method to prepare size‐controllable Au nanoparticles (NPs) in aqueous solutions from bulk Au substrates. First, chitosan (Ch)‐capped Au‐containing complexes were prepared by electrochemical oxidation–reduction cycles in 0.1 N NaCl and 1 g/l Ch solutions. Then the solutions were heated from room temperature to boiling at different heating rates to synthesize size‐controllable Au NPs. The particle sizes of the prepared Au(111) NPs could be controlled from 5 to 30 nm with an increase of the heating rate during preparation. Experimental results indicate that the prepared Au(111) NPs with diameters ranging from 10 to 30 nm can serve as surface‐enhanced Raman scattering active probes for molecules of rhodamine 6G. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
8.
To increase the sensitivity in surface‐enhanced Raman scattering (SERS) measurement, a three‐dimensional (3D) SERS substrate was prepared by the decoration of silver nanoparticles (AgNPs) on the side walls of ZnO nanowires. The prepared 3D SERS substrates provide the advantages of highly loaded density of AgNPs, with a large specific surface area to interact with analytes, and the ease for the analytes to access the surfaces of AgNPs. To prepare the substrates, ZnO nanowires were first grown on a glass plate by wet chemical method. By treating SnCl2 on the surfaces of ZnO nanowires, Ag seeds could be formed on the side wall of the ZnO nanowires, which were further grown to a suitable size for SERS measurements via photochemical reduction. To optimize and understand the influences of the parameters used in preparation of the substrates, the reaction conditions were systematically adjusted and examined. Results indicated that AgNPs could be successfully decorated on the side wall of the ZnO nanowires only by the assistances of SnCl2. The size and density of AgNPs were affected by both the concentration of silver nitrate and the irradiation time. With optimized condition, the prepared 3D substrates provided an enhancement factor approaching 7 orders of magnitude compared with conventional Raman intensity. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
9.
Hongxing Cai Jing Zhu Gao Chen Liwei Liu Guang S. He Xihe Zhang 《Journal of Raman spectroscopy : JRS》2011,42(9):1722-1727
As an infrared Raman probe, the molecule 3,3′‐diethylthiatricarbocyanine iodide (DTTC) has received much attention in the past decades due to its potential applications in Raman imaging, single‐cell detection, cancer diagnosis, and surface‐enhanced Raman scattering (SERS). In this work, ordinary Raman, SERS, and theoretical Raman spectra were investigated to estimate the DTTC suspension. More specifically, the original gold nanospheres (60 nm diameter) and gold nanorods were encoded with DTTC and stabilized with a layer of thiol–polyethylene glycol as Raman reporter; SERS data were also obtained from the samples. Hartree–Fock theory and density functional theory (DFT) calculation were applied to calculate the optimized Raman spectra of DTTC in water on the B3LYP/6‐31G level. Subsequently, the obtained experimental spectra from DTTC were carefully compared with the theoretically calculated spectra, and good agreement was obtained between the theoretical and experimental results.The bands between 500 and 3100 cm−1 in the ordinary Raman and SERS spectra were assigned as well. This work will facilitate the development of ultrasensitive SERS probes for advanced biomedical imaging applications. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
10.
In this work, we use electrochemical oxidation–reduction cycles (ORC) methods to prepare surface‐enhanced Raman scattering (SERS)‐active gold substrates modified with SiO2 nanoparticles to improve the corresponding SERS performances. Based on the modified substrates, the SERS of Rhodamine 6G (R6G) exhibits a higher intensity by 3‐fold of magnitude, as compared with that of R6G adsorbed on a SERS‐active Au substrate without the modification of SiO2 nanoparticles. Moreover, the SERS enhancement capabilities of the modified and the unmodified Au substrates are seriously destroyed at temperatures higher than 250 and 200 °C, respectively. These results indicate that the modification of SiO2 nanoparticles can improve the thermal stability of SERS‐active substrates. The aging in SERS intensity is also depressed on this modified Au substrate due to the contribution of SiO2 nanoparticles to SERS effects. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
11.
C. M. Muntean N. Leopold A. Halmagyi S. Valimareanu 《Journal of Raman spectroscopy : JRS》2013,44(6):817-822
In this work, the surface‐enhanced Raman scattering (SERS) spectra of seven genomic DNAs from leaves of chrysanthemum (Dendranthema grandiflora Ramat.), common sundew (Drosera rotundifolia L.), edelweiss (Leontopodium alpinum Cass), Epilobium hirsutum L., Hypericum richeri ssp. transsilvanicum (Čelak) Ciocârlan, rose (Rosa x hybrida L.) and redwood (Sequoia sempervirens D. Don. Endl.), respectively, have been analyzed in the wavenumber range 200–1800 cm−1. The surface‐enhanced Raman vibrational modes for each of these cases, spectroscopic band assignments and structural interpretations of genomic DNAs are reported. A high molecular structural information content can be found in the SERS spectra of these DNAs from leaf tissues. Based on this work, specific plant DNA–ligand interactions or accurate local structure of DNA might be further investigated using surface‐enhanced Raman spectroscopy. Besides, this study will generate information which is valuable in the development of label‐free DNA detection for chemical probing in living cell. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
12.
F. H. Scholes T. J. Davis K. C. Vernon D. Lau S. A. Furman A. M. Glenn 《Journal of Raman spectroscopy : JRS》2012,43(2):196-201
Electromagnetic coupling between localised plasmons on metal nanoparticles and the strong localised fields on a micro‐structured surface is demonstrated as a means to increase the enhancement factor in surface‐enhanced Raman scattering (SERS) spectroscopy. Au nanoparticles of diameter 20 nm were deposited on a micro‐structured Au surface consisting of a periodic array of square‐based pyramidal pits (Klarite). The spectra of 4‐aminothiophenol (4‐ATP) were compared before and after deposition of Au nanoparticles on the micro‐structured surface. The addition of Au nanoparticles is shown to provide significantly higher signal intensities, with improvements of the order of ∼103 per molecule compared with spectra obtained from the micro‐structured substrate alone. This hybrid approach offers promise for combining nanoparticles with micro‐ and nano‐structured surfaces in order to design SERS substrates with higher sensitivities. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
13.
Xiaofeng Shi Yong‐Hyok Kwon Jun Ma Ronger Zheng Chunyan Wang H.‐D. Kronfeldt 《Journal of Raman spectroscopy : JRS》2013,44(1):41-46
A surface‐enhanced Raman scattering (SERS) active substrate for the detection of polycyclic aromatic hydrocarbons (PAHs) was developed, which used 25, 27‐dimercaptoacetic acid‐26, 28‐dihydroxy‐4‐terbutyl calix[4]arene (DMCX) to functionalize a gold colloid film. This SERS‐active substrate prepared by self‐assembly method exhibits a high sensitivity, especially for the detection of PAHs. With the use of this SERS‐active substrate and with the application of the shifted excitation Raman difference spectroscopy (SERDS) technique, Raman signals of pyrene and anthracene in aqueous solutions at low concentration level (500 pM) can be obtained. Moreover, because PAHs are blocked from being directly adsorbed on gold colloid by DMCX and the photochemical reactions of adsorbates are avoided, the Raman bands of PAHs adsorbed on DMCX‐fuctionalized gold colloid film can be one‐to‐one correspondence with those of solid PAHs, and additionally, this SERS‐active substrate can be easily cleaned and reused. The obtained results demonstrate that the DMCX‐functionalized gold colloid films prepared by self‐assembly method have great potential to be developed to an in situ PAHs detection substrate. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
Andrzej Kudelski Marcin Pisarek Agata Roguska Marcin Hodyski Maria Janik‐Czachor 《Journal of Raman spectroscopy : JRS》2012,43(10):1360-1366
Silver nanoparticles deposited on various ‘inert’ porous materials (mainly Al2O3 and TiO2) are often used as substrates for surface‐enhanced Raman scattering (SERS) measurements. In this study, we used the sputter deposition technique to cover tubular arrays of Al2O3 and TiO2 with Ag nanoparticles. Raman spectra of pyridine (as a probe molecule) and of two selected dyes (5‐(4‐dimethylaminobenzylidene)rhodanine and 5‐(4‐(dimethylamino)benzylidene)‐3‐(3‐methoxypropyl)rhodanine) adsorbed on fabricated Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al substrates were measured. We found that the SERS spectra of pyridine adsorbed on Ag nanoparticles deposited on an Al2O3‐n/Al substrate are distinctly different from those measured for an Ag/TiO2‐n/Ti composite. Similar effects were observed for dyes adsorbed on the surface of both composites. The spectral differences between two kinds of composites (Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al) are discussed in terms of (1) the modified electronic structure of the Ag nanoparticles due to their interaction with different substrate materials and (2) the different atomic topology of the metal particles thus deposited on the surfaces of the substrates. Composite samples were also studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
15.
Min‐Min Xu Ya‐Xian Yuan Jian‐Lin Yao San‐Yang Han Mei Wang Ren‐Ao Gu 《Journal of Raman spectroscopy : JRS》2011,42(3):324-331
The adsorption of 2‐amino‐5‐cyanopyridine (2‐ACP) was investigated in solution at different pH values by i n situ surface‐enhanced Raman scattering (SERS) spectroscopy combined with the electrochemical method. The assignments of the main bands were first performed on the basis of the spectral features of similar compounds and with the help of density functional theory calculations. The results revealed that the adsorption and the interfacial structure of 2‐ACP on the Au electrode depended on the applied potential and the pH values of the solution. In the natural solution, 2‐ACP was adsorbed on the surface with a vertical orientation by the CN group from − 0.4 to − 1.0 V, whereas in the − 0.4 to 0.8 V range, the N atom of the pyridine ring was bound to the surface. A transition region for the reorientation of the two adsorption modes was observed from − 0.8 to − 0.4 V. A flat configuration was preferred at an extremely negative potential. A similar surface adsorption behavior was observed in the alkali environment, while the Stark effect slope decreased because of the adsorption of OH−. Due to the protonation of N atom in the acidic solution, the potential region for the coexistence of two configurations ranged from − 0.4 to 0.2 V. Additionally, a similar adsorption configuration was proposed on the Au colloids at various pH values. The results revealed that the adsorption behavior became more complex on colloidal surfaces than that on a rigid electrode surface. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
16.
Vibrational bands of L ‐tryptophan which was adsorbed on Ag nanoparticles (∼10 nm in diameter) have been investigated in the spectral range of 200–1700 cm−1 using surface‐enhanced Raman scattering (SERS) spectroscopy. Compared with the normal Raman scattering (NRS) of L ‐tryptophan in either 0.5 M aqueous solution (NRS‐AS) or solid powder (NRS‐SP), the intensified signals by SERS have made the SERS investigation at a lower molecular concentration (5 × 10−4 M ) possible. Ab initio calculations at the B3LYP/6‐311G level have been carried out to predict the optimal structure and vibrational wavenumbers for the zwitterionic form of L ‐tryptophan. Facilitated with the theoretical prediction, the observed vibrational modes of L ‐tryptophan in the NRS‐AS, NRS‐SP, and SERS spectra have been analyzed. In the spectroscopic observations, there are no significant changes for the vibrational bands of the indole ring in either NRS‐AS, NRS‐SP, or SERS. In contrast, spectral intensities involving the vibrations of carboxylate and amino groups are weak in NRS‐AS and NRS‐SP, but strong in SERS. The intensity enhancement in the SERS spectrum can reach 103–104‐fold magnification. On the basis of spectroscopic analysis, the carboxylate and amino groups of L ‐tryptophan are determined to be the preferential terminal groups to attach onto the surfaces of Ag nanoparticles in the SERS measurement. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
17.
Ivana loufov Blanka Vl
kov Marek Prochzka Jan Svoboda Jií Vohlídal 《Journal of Raman spectroscopy : JRS》2014,45(5):338-348
Nonresonance (or normal) Raman scattering (NRS), resonance Raman scattering (RRS), surface‐enhanced Raman scattering (SERS), and surface‐enhanced RRS (SERRS) spectra of [Fe(tpy)2]2+ complex dication (tpy = 2,2':6',2''‐terpyridine) are reported. The comparison of RRS/NRS and SERRS/SERS excitation profiles of [Fe(tpy)2]2+ spectral bands in the range of 445–780 nm is supported by density functional theory (DFT) calculations, Raman depolarization measurements, comparison of the solid [Fe(tpy)2](SO4)2 and solution RRS spectra, and characterization of the Ag nanoparticle (NP) hydrosol/[Fe(tpy)2]2+ SERS/SERRS active system by surface plasmon extinction spectrum and transmission electron microscopy image of the fractal aggregates (D = 1.82). By DFT calculations, both the Raman active modes and the electronic states of the complex have been assigned to the symmetry species of the D2d point group. It has been demonstrated that upon the electrostatic bonding of the complex dication to the chloride‐modified Ag NPs, the geometric and ground state electronic structure of the complex and the identity of the three different metal‐to‐ligand charge transfer (1MLCT) electronic transitions remain preserved. On the other hand, the effect of ion pairing manifests itself by a slight change in localization of one of the electronic transitions (with max. at 552 nm) as well as by promotion of the Herzberg–Teller activation of E modes resulting from coupling of E and B2 excited electronic states. Finally, the very low, 1 × 10−11 M SERRS spectral detection limit of [Fe(tpy)2]2+ at 532‐nm excitation is attributed to a concerted action of the electromagnetic and molecular resonance mechanism, in conjunction to the electrostatic bonding of the complex dication to the chloride‐modified Ag NP surface. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献