首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface‐enhanced Raman scattering (SERS) measurements were carried out on stilbazolium merocyanine dye in methanol and pyridine solvents. Both solutions were measured in a series of concentrations covering a range of 5 × 10−5 M to 5 × 10−8 M . In these measurements, Ag and Au colloids were used, and the results have shown that Ag colloids yield better enhancement in the Raman spectra of this dye. Moreover, the effect of adding NaCl solution to the SERS samples was also studied. All measurements were carried out using the state‐of‐the‐art ChiralRaman instrument, which utilizes a 532 nm laser source. We report here on the success of using SERS to obtain Raman spectra of merocyanine dye at very low concentrations in an attempt to find a new approach that can be used for further investigations of the dye. The SERS spectra are reported here, and the results from different solutions, colloids, concentrations and pH values are compared. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
D’Andrea  C.  Neri  F.  Ossi  P. M.  Santo  N.  Trusso  S. 《Laser Physics》2011,21(4):818-822
Thin silver films were deposited by pulsed laser ablation in a controlled Ar atmosphere and their SERS activity was investigated. The samples were grown at Ar pressures between 10 and 70 Pa and at different laser pulse numbers. Other deposition parameters such as laser fluence, target to substrate distance and substrate temperature were kept fixed at 2.0 J/cm2, 35 mm and 297 K. Film morphologies were investigated by scanning and transmission electron microscopies (SEM, TEM). Surface features range from isolated nearly spherical nanoparticles to larger islands with smoothed edges. Cluster growth is favored by plume confinement induced by background gas. After landing on the substrate clusters start to aggregate giving rise to larger structures as long as the deposition goes on. Such a path of film growth allows controlling the surface morphology as a function of laser pulse number and Ar pressure. These two easy-to-manage process parameters control the number density and the average size of the as-deposited nanoparticles. We investigated the influence of substrate morphologies on their surface enhanced Raman scattering properties. Raman measurements were performed after soaking the samples in rhodamine 6G aqueous solutions over the concentration range between 1.0 × 10−4 and 5.0 × 10−8 M. The sensitivity of the film SERS activity on the surface features is put into evidence.  相似文献   

3.
The characteristics of the sol–gel matrix embedding Ag nanoparticles functionalized with 25,27‐dimercaptoacetic acid‐26,28‐dihydroxy‐4‐tert‐butylcalix[4]arene (DMCX) suitable for the in situ detection of polycyclic aromatic hydrocarbons (PAHs) in seawater is presented. The DMCX‐functionalized silver nanoparticles were produced by the thermal reduction method in xerogel film. The silver colloid blocks were formed in the sol–gel matrix, with a diameter ranging from 50 to 120 nm. DMCX forming the monolayer on the silver nanoparticle surface contributes to the surface‐enhanced Raman scattering (SERS) activity due to the aggregation of silver nanoparticles and the preconcentration of PAH molecules within the zone of electromagnetic enhancement. When selected, PAH molecules e.g. pyrene and naphthalene were adsorbed onto the SERS substrate; Raman band positions of PAH were slightly shifted. A calibration procedure reveals that this type of SERS substrate has a limit of detection of 3 × 10−10 mol/l for pyrene and 13 × 10−9 mol/l for naphthalene in artificial seawater. The Raman signal response on a pyrene concentration change in artificial seawater was evaluated using a 671‐nm Raman setup with a flow‐through cell. This type of SERS substrate will be suitable for the in situ trace detection of pollutant chemicals in seawater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The use of Au@SiO2 core/shell nanoparticle (NP) assemblage with highly sensitive surface‐enhanced Raman scattering (SERS) was investigated for the determination of glucose and uric acid in this study. Rhodamine 6G dye molecules were used to evaluate the SERS enhancement factor for the synthesized Au@SiO2 core/shell NPs with various silica shell thicknesses. The enhancement of SERS signal from Rhodamine 6G was found to increase with a decrease in the shell thickness. The core/shell assemblage with silica layer of 1–2 nm over a Au NP of ~36 nm showed the highest SERS signal. Our results show that the SERS technique is able to detect glucose and uric acid within wide concentration ranges, i.e. 20 ng/dL to 20 mg/dL (10−12–10−3 M) and 16.8 ng/dL to 2.9 mg/dL (10−11–1.72 × 10−4 M), respectively, with associated lower detection limits of ~20 ng/dL (~1.0 × 10−12 M) and ~16.8 ng/dL (~1.0 × 10−11 M). Our work offers a low‐cost route to the fabrication of agile sensing devices applicable to the monitoring of disease progression. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, a novel technique for the fabrication of surface enhanced Raman scattering (SERS) active silver clusters on glassy carbon (GC) has been proposed. It was found that silver clusters could be formed on a layer of positively charged poly(diallyldimethylammonium) (PDDA) anchored to a carbon surface by 4‐aminobenzoic acid when a drop containing silver nanoparticles was deposited on it. The characteristics of the obtained silver clusters have been investigated by atomic force microscopy (AFM), SERS and an SERS‐based Raman mapping technique in the form of line scanning. The AFM image shows that the silver clusters consist of several silver nanoparticles and the size of the clusters is in the range 80–100 nm. The SERS spectra of different concentrations of rhodamine 6G (R6G) on the silver clusters were obtained and compared with those from a silver colloid. The apparent enhancement factor (AEF) was estimated to be as large as 3.1 × 104 relative to silver colloid, which might have resulted from the presence of ‘hot‐spots’ at the silver clusters, providing a highly localized electromagnetic field for the large enhancement of the SERS spectra of R6G. The minimum electromagnetic enhancement factor (EEF) is estimated to be 5.4 × 107 by comparison with the SERS spectra of R6G on the silver clusters and on the bare GC surface. SERS‐based Raman mapping technique in the form of line scanning further illustrates the good SERS activity and reproducibility on the silver clusters. Finally, 4‐mercaptopyridine (4‐Mpy) was chosen as an analyte and the lowest detected concentration was investigated by the SERS‐active silver clusters. A concentration of 1.6 × 10−10 M 4‐Mpy could be detected with the SERS‐active silver clusters, showing the great potential of the technique in practical applications of microanalysis with high sensitivity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The absolute Raman scattering cross sections (σRS) for the 471, 217, and 153 cm−1 modes of sulfur were measured as 6.0 ± 1.2 × 10−27, 7.7 ± 1.6 × 10−27, and 1.2 ± 0.24 × 10−26 cm2 at 815, 799, and 794 nm, respectively, using a 785‐nm pump laser. The corresponding values of σRS at 1120, 1089, and 1081 nm were determined to be 1.5 ± 0.3 × 10−27, 1.2 ± 0.24 × 10−27, and 1.2 ± 0.24 × 10−27 cm2 using a 1064‐nm laser. A temperature‐controlled, small‐cavity (2.125 mm diameter) blackbody source was used to calibrate the signal output of the Raman spectrometers for these measurements. Standoff Raman detection of a 6‐mm‐thick sulfur specimen located at 1500 m from the pump laser and the Raman spectrometer was made using a 1.4‐W, CW, 785‐nm pump laser. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Ethyl carbamate (EC), a potentially toxic compound, is found in alcoholic beverages and fermented foodstuff. A combined experimental and theoretical study of Raman on EC is reported in this work for the first time. The Raman bands observed for EC in solid phase are characteristic for the carbonyl group, C―C, C―H and N―H stretching and deformation vibrations. These spectral features coupled with a pKa study allowed establishing the neutral species of EC present in the aqueous solutions experimentally tested at different concentrations. In addition, by performing a density functional theory study in the gas phase, the calculated geometry, the harmonic vibrational modes, and the Raman scattering activities of EC were found to be in good agreement with our experimental data and helped establish the surface‐enhanced Raman scattering (SERS) behavior and EC adsorption geometry on the silver surfaces. The Raman peak at 1006 cm−1, assigned to the υs(CC) + ω(CH) modes, the strongest and best reproducible peak in the SERS spectra, was used for a quantitative evaluation of EC. The limit of detection, which corresponds to a signal‐to‐noise ratio equal to 3, was found to be 2 × 10−7 M (17.8 µg l−1). SERS spectra obtained by using hydroxylamine hydrochloride‐reduced silver nanoparticles provide a fast and reproducible qualitative and quantitative determination of EC in aqueous solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Vibrational bands of L ‐tryptophan which was adsorbed on Ag nanoparticles (∼10 nm in diameter) have been investigated in the spectral range of 200–1700 cm−1 using surface‐enhanced Raman scattering (SERS) spectroscopy. Compared with the normal Raman scattering (NRS) of L ‐tryptophan in either 0.5 M aqueous solution (NRS‐AS) or solid powder (NRS‐SP), the intensified signals by SERS have made the SERS investigation at a lower molecular concentration (5 × 10−4 M ) possible. Ab initio calculations at the B3LYP/6‐311G level have been carried out to predict the optimal structure and vibrational wavenumbers for the zwitterionic form of L ‐tryptophan. Facilitated with the theoretical prediction, the observed vibrational modes of L ‐tryptophan in the NRS‐AS, NRS‐SP, and SERS spectra have been analyzed. In the spectroscopic observations, there are no significant changes for the vibrational bands of the indole ring in either NRS‐AS, NRS‐SP, or SERS. In contrast, spectral intensities involving the vibrations of carboxylate and amino groups are weak in NRS‐AS and NRS‐SP, but strong in SERS. The intensity enhancement in the SERS spectrum can reach 103–104‐fold magnification. On the basis of spectroscopic analysis, the carboxylate and amino groups of L ‐tryptophan are determined to be the preferential terminal groups to attach onto the surfaces of Ag nanoparticles in the SERS measurement. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The absolute Raman scattering cross section (σRS) for the 1584‐cm−1 band of benzenethiol at 897 nm (1.383 eV) has been measured to be 8.9 ± 1.8 × 10−30 cm2 using a 785‐nm pump laser. A temperature‐controlled, small‐cavity blackbody source was used to calibrate the signal output of the Raman spectrometer. We also measured the absolute surface‐enhanced Raman scattering cross section (σSERS) of benzenethiol adsorbed onto a silver‐coated, femtosecond laser‐nanostructured substrate. Using the measured values of 8.9 ± 1.8 × 10−30 and 6.6 ± 1.3 × 10−24 cm2 for σRS and σSERS respectively, we calculate an average cross‐section enhancement factor (EF) of 0.8 ± 0.3 × 106. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
We report the fabrication of surface enhanced Raman spectroscopy (SERS) fused silica glass substrates using fast femtosecond-laser (fs-laser) scan, followed by silver chemical plating. A cross-section enhancement factor (EF) of 2.5×106, evaluated by Rhodamine 6G (10−7 M solution), was obtained. The Raman mapping indicated a good uniformity over the fs-laser scanned area. The dimension and pattern of the SERS activated region can be conveniently controlled by laser 2D scanning, potentially enabling integration of SERS into a high-order optical–chemical analysis system on a glass chip.  相似文献   

11.
The Ag–Au compound nanostructure films with controllable patterns of Ag nanoparticle (NP) aggregates were fabricated. A strategy of two‐step synthesis was employed toward the target products. Firstly, the precursor Au NP (17 nm) films were synthesized as templates. Secondly, the Ag NPs (45 nm) were deposited on the precursor films. Three types of Ag NP aggregates were obtained including discrete Ag NPs (discrete type), necklace‐like Ag NP aggregates (necklace type), and huddle‐like Ag NP aggregates (huddle type). The surface‐enhanced Raman scattering (SERS) property was studied on these nanostructures by using the probing molecule of rhodamine 6G under the excitation laser of 514.5 nm. Interestingly, the different types of samples showed different enhancement abilities. A statistical method was employed to assess the enhancement. The relative enhancement factor for each Ag NP was estimated quantitatively under the ratio of 1 : 25 : 18 for the discrete‐type, necklace‐type, and huddle‐type samples at the given concentration of 10−8 mol/l. This research shows that the enhancement ability of each Ag NP is dependent on the aggregate morphology. Moreover, the different enhancement abilities displayed different limit detection concentrations up to 10−8, 10−11, and 10−9 mol/l, separately. The understanding of the relationship between the defined nanostructures and the SERS enhancement is very meaningful for the design of new SERS substrates with better performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Using sodium borohydride as the reducing agent and polyvinyl pyrrolidone (PVP, MW = 10 000) as the stabilizer, we obtained silver nanoparticles of various diameters (8–78 nm) from silver nitrate aqueous solutions in the concentration range from 0.001 to 0.1 M. The surface‐enhanced Raman scattering (SERS) from benzoic acid's ring‐breathing mode at 1003 cm−1 was detected from its dilute solutions (∼10−2 M) doped with these silver nanoparticles under 488‐nm laser excitation. The observed size dependences of SERS intensities fit quite well with those calculated by Schatz's theoretical model for spherical silver nanoparticles. The only exception occurred with the smallest particles (8 nm), possibly due to the failure of Maxwell's electromagnetic theory used in this model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
We report observations of single‐molecule detection of thionine and its dynamic interactions on aggregated gold nanoparticle clusters using surface enhanced Raman scattering (SERS). Spectral intensities were found to be independent of the size of Au nanoparticles studied (from 17 to 80 nm) at thionine concentration below 10−12 M or at single‐molecule concentration levels. Raman line separations and, in particular, spectral fluctuations and blinking were also observed, suggesting temporal changes in single molecular motion and/or arrangements of thionine on Au nanoparticle surfaces. In contrast, by using dispersed Au nanoparticles, only ensemble SERS spectra could be observed at relatively high concentrations (> 10−8 M thionine), and spectral intensities varied with the size of Au nanoparticles. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Surface‐enhanced Raman spectroscopy (SERS) was used for rapid detection of sodium thiocyanate in milk employing silver aggregates as active substrate. Silver nanoparticles were induced to silver aggregates by trichloroacetic acid (TCA). The limit of detection (LOD) for sodium thiocyanate was 10−2 µg ml−1 in water with an analytical enhancement factor of 5.4 × 106. The silver aggregates represent good reproducibility and stability. Good linear relationship was obtained for sodium thiocyanate in milk at concentration ranges from 0.1 to 10 µg ml−1 (R2 = 0.995). Using TCA as protein precipitator, silver colloid would aggregate spontaneously when mixing with samples during SERS measurement without the need of additional aggregating agent. The simple pretreatment procedures and analytical methods are less time consuming (<10 min) and environmentally friendly, making the proposed method much practical for in situ detection of sodium thiocyanate in market milk. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Silver salts of aromatic thiols are one class of organic–inorganic heterostructured materials, showing peculiar photoreaction characteristics. When an argon ion laser is exposed to silver benzenethiolate (AgBT), for instance, its Raman spectrum changes over time, eventually becoming the same as the surface‐enhanced Raman scattering (SERS) spectrum of benzenethiol on a roughened Ag substrate. AgBT and its analogs can thus be used as a core material of molecular sensors operating via SERS; we demonstrate this specifically, by monitoring the SERS peaks of BT, in which biotinylated AgBT selectively recognizes streptavidin molecules down to concentrations of 10−11 g ml−1 (i.e. ∼0.2 pM ). Since numerous silver thiolates can be used as the core material, multiple bioassays are readily accomplished using the present methodology. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
In this work, we demonstrated a bottom‐up growth of Ag@SiO2/Ag core‐shell nanosphere arrays with tunable SiO2 interior insulator and the optimized surface‐enhanced Raman scattering (SERS) substrate based on a nanostructure performed with both high sensitivity and large‐area uniformity. Their morphological, structural, and optical properties were characterized, and the induced SERS activities were investigated theoretically by the FDTD simulation and experimentally using analyte molecules. An ultrathin SiO2 shell with tunable thickness can be synthesized pinhole‐free by a chemical vapor deposition, working as an interior insulator between the Ag core and Ag out‐layer coating. A detection limit as low as 10−12 M and an enhancement factor up to 3 × 107 were obtained, and the SERS signal was highly reproducible with small standard deviation. The method opened up a way to create a new class of SERS activity sensor with high‐density ‘hot spots’, and it may play an important role in device design and the corresponding biological and food safety monitoring applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Polyvinyl alcohol (PVA)‐protected silver nanoarchitecture (PVA Ag nanofilm) on the surface of the glass substrate was prepared by using electrostatic self‐assembly at a proper voltage. The two‐dimensional morphology of the PVA Ag nanofilm has been examined by scanning electron microscopy (SEM). The surface‐enhanced Raman scattering (SERS) spectra of human serum (HS) on PVA Ag nanofilms were recorded. The results show that the Raman scattering of HS can be enhanced efficiently based on these PVA Ag nanofilms. However, it also can be seen that the effect of sodium citrate (SC) acting as anticoagulant on the SERS spectrum of HS is unnegligible, which has not been discussed adequately in the previous reports. To discuss the effect of SC on the SERS spectrum of HS, we have studied the normal Raman spectra of solid SC and the SERS spectra of 1.0 × 10−3 mol/l aqueous solution of SC adsorbed on the PVA–Ag nanofilms. Meanwhile, Raman wavenumbers of the SC molecule were calculated by using the method of DFT‐B3LYP/6‐31G*, and the dominant assignations of the calculated wavenumbers were performed. It was found that the density functional theory (DFT) calculation of SC Raman spectrum matches well with the experimental results. With the perfect reproducibility and high SERS activity, this method will be useful in the development of HS detection methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
N‐Acetylneuraminic acid (sialic acid, Neu5Ac) has recently gained interest as a potential marker for a variety of pathophysiological processes, although no Raman study has been reported for this important biomolecule. In this paper, the vibrational properties of Neu5Ac were studied by means of Raman, surface‐enhanced Raman scattering (SERS), and density functional theory calculations. By adsorption of Neu5Ac on silver nanoparticle surface, strongly enhanced Raman intensities are obtained, allowing easy measurement of small amounts of aqueous Neu5Ac (10 µl of a 10−7 m solution) utilizing low laser power and short exposure time. The mechanism of adsorption of Neu5Ac on the silver surface is discussed on the basis of the experimental and theoretical results. This study demonstrates that SERS can provide an effective tool for development of a label‐free, rapid, and sensitive optical platform for identification of Neu5Ac. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
We achieved single‐molecule surface‐enhanced Raman scattering (SM‐SERS) spectra from ultralow concentrations (10−15 M) of fullerene C60 on uniformly assembled Au nanoparticles. It was found that resonant excitation at 785 nm is a powerful tool to probe SM‐SERS in this system. The appearance of additional bands and splitting of some vibrational modes were observed because of the symmetry reduction of the adsorbed molecule and a relaxation in the surface selection rules. Time‐evolved spectral fluctuation and ‘hot spot’ dependence in the SM‐SERS spectra were demonstrated to result from the single‐molecule Raman behavior of the spherical C60 on Au nanoparticles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
New polymeric films were developed for optoelectronic devices by an interaction between Fullerene (C60) and polyvinyl alcohol (PVALC) via the casting method. The structure analysis was studied by Gaussian fitting of XRD patterns and SAED (Selected area electron diffraction). Using HRTEM and SEM, the particle shape and the nanocomposite surface on PVALC are investigated. The change in the functional group of the composites was observed via FT-IR and Raman spectroscopy. In this work, we calculated the bandgap and localized state's width, in the forbidden band, via the absorption coefficient obtained from the Beer-Lambert relation. The bandgap of nanocomposite films was reduced to 4.05 eV. Moreover, due to the surface plasmon absorption in nanocomposite films, k (Extinction index) increases with the doping concentration. The bandgap and refractive index (n) relations were studied via various empirical formulas to calculate the average value of n. The linear optical parameters, such as 1st-order susceptibility (χ(1)), high-frequency dielectric (e), and static dielectric (eo) constants, were calculated. The nonlinear susceptibility χ(3) raised from 0.928 × 10−12 esu to 1.779 × 10−12 esu. Also, the refractive index (n2) enhanced from 1.665 × 10−11 esu to 2.993 × 10−11 esu. The optical limiting performance and the ability of nanocomposite to absorb laser beams were tested. The result suggests that C60 has a considerable effect on the PVALC matrix, and the samples have the necessary guidance for laser CUT-OFF and photonic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号