首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrochemical quartz crystal microbalance (EQCM) and crystal admittance measurements were used to study the potentiodynamic electrodeposition of polyaniline films. Variations in peak admittance provided the distinction between acoustically thin and acoustically thick films. In the former instance, the Sauerbrey equation was used to interpret the EQCM frequency shift in gravimetric terms. In the latter case, admittance spectra were interpreted viscoelastically to yield shear storage and loss moduli. Variations in storage modulus with potential (within a given deposition cycle) and with number of deposition cycles (at a given potential) were small, covering the range 1.1–1.6 × 107 dyn cm−2. Variations in loss modulus were much more dramatic, increasing from very low levels typical of a simple fluid to values similar to the storage modulus. More subtle variations of both components within a single potential cycle were highlighted using a novel differential format. This revealed two peaks, correlating with the first film redox process and with further film oxidation/polymerization. Contribution to the International Workshop on Electrochemistry of Electroactive Materials (WEEM-2006), Repino, Russia, 24–29 June 2006.  相似文献   

2.
Composite films of titanium phosphate (TiPS)/Prussian blue (PB) were fabricated by the alternative deposition of TiPS layer and PB nanocrystals. The layer of TiPS was fabricated by adsorption of hydrated titanium from aqueous Ti(SO4)2 solution and subsequent reaction with phosphate groups. The layer of PB nanocrystals was fabricated by sequential adsorption of FeCl3 solution and K4[Fe(CN)6] solution. Regular deposition of TiPS/PB composite films were verified by UV-vis absorption spectroscopy and quartz crystal microbalance measurements. The successful fabrication of the TiPS/PB composite films was further confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. Instead of producing films of TiPS layers alternating with PB nanocrystal layers, the TiPS/PB composite films have a structure in which the interstices of the PB nanocrystal films are filled with TiPS component. TiPS/PB composite films show enhanced electrochemical properties and improved stability in comparison with pure PB films prepared by the multiple sequential adsorption process. TiPS/PB composite films have the capability to catalyze the electrochemical reduction of H2O2 and can be used as a biosensor for detecting H2O2.  相似文献   

3.
α-Zirconium phosphate was chemically modified with 1,2-bis(dimethylchlorosilyl)ethane to graft organic chain, and then it was used as host material for inorganic nanosheet-polyaniline hybrid. The grafted α-zirconium phosphate was exfoliated in an acetonitrile solution with tetrabutylammonium salt and aniline. The electrodeposition in the presence of aniline was performed, and then it resulted in a formation of higher-order structure in which phosphate nanosheet was propped up by 1,2-bis(dimethylchlorosilyl)ethane with intrusion of polyaniline into the nanospace. The gravimetric capacitance of the α-zirconium phosphate without grafts and polyaniline hybrid film was around 194 F/g with the base on the amount of polyaniline mass. On the other hand, the α-zirconium phosphate nanosheet with grafts and polyaniline hybrid film provided larger capacitance of around 350 F/g in maximum. The nanospace formed by grafted phosphate nanosheet with 1,2-bis(dimethylchlorosilyl)ethane molecules gives increased amounts of polyaniline included and diffusion paths for ions.  相似文献   

4.
Journal of Solid State Electrochemistry - Polyaniline/diazonium salt/TiO2 nanotube arrays (PANI/DZ/TiO2 NAs), as a supercapacitor electrode material, are fabricated by two-step anodic oxidation of...  相似文献   

5.
Silicon substrates with (100) orientation were modified with amino-silane self-assembled monolayer (SAM) to provide amino (NH(2)) moieties at the substrate surface. Self-organization of polyaniline during chemical polymerization, on this modified surface, leads to the growth of highly oriented films at the substrate-polymer interface. The morphology studied using scanning electron microscopy and atomic force microscopy revealed the formation of polymer film with well faceted pyramidal crystallites. XPS and FTIR spectroscopy were used to analyze the chemical structure of the film. X-ray diffraction measurements show the crystalline nature of the polyaniline, whose lattice parameters are in agreement with the reported values. This study underlines the importance of a SAM in deciding the structure and morphology of the deposited polymer.  相似文献   

6.
To explore the dependences of morphology and electrochemical performance of polyaniline/nickel hexacyanoferrate (PANI/NiHCF) nanogranules on pH value of the reaction system, electrodeposition of PANI/NiHCF nanogranules was performed across a pH range from 0 to 7 on carbon nanotubes (CNTs)-modified platinum substrate by cyclic voltammetry in a mixture of 0.002 mol L?1 NiSO4, 0.25 mol L?1 Na2SO4, 0.002 mol L?1 K3Fe(CN)6, and 0.01 mol L?1 aniline solutions. The morphology and structure of PANI/NiHCF nanogranules were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, respectively. The supercapacitive performances of the nanogranules were investigated with cyclic voltammetry (CV), charge/discharge tests, and electrochemical impedance spectroscopy (EIS). The results showed that the nanogranules with different morphology and sizes were obtained with the change of pH values from 0 to 7, which could control the mechanism of homogeneous or heterogeneous nucleation directly. The nanogranules were dispersed in matrix uniformly at pH 0 and pH 1, while the size of which decreased with the increase of pH values. The smooth cross-linking network structure was found from pH 2 to 7. The structure of PANI/NiHCF nanogranules had slightly changed from pH 0 to 7. PANI/NiHCF nanogranules had good electrochemical performance from pH 0 to 7 in a mixture of 0.5 mol L?1 H2SO4 and 0.5 mol L?1 KNO3 solutions, and the highest specific capacitance value of 274 F g?1 was obtained at current densities of 2 mA cm?2 in neutral medium. PANI/NiHCF nanogranules had high stability in neutral medium after 2,000 cycles by CV.  相似文献   

7.
以对苯二胺为引发剂,用苯胺和氧化石墨烯(GO)为原料,采用化学原位聚合法制备了氧化石墨烯/聚苯胺(GP)复合材料,不添加任何表面活性剂和模板剂。采用傅里叶变换红外(FTIR)光谱、X射线粉末衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)对复合材料进行了物性表征,并对其电化学性能进行了测试。结果显示,复合材料保持了氧化石墨烯的基本形貌,聚苯胺纤维分布在氧化石墨烯层间及所形成的褶皱上。二者形成的二元纳米复合材料,发挥良好的协同作用,电化学性能得到了改善。当电流密度为0.5A·g-1时,复合材料的比电容可以达到623F·g-1,远大于石墨烯和聚苯胺单体的比电容。  相似文献   

8.
Polyaniline (PANI)/graphene nanosheet (GNS) composites were prepared by a chemical oxidation polymerization. The morphology, structure, and crystallinity of the composites were examined by scanning electron microscopy, transition electron microscopy, and X-ray diffraction. Electrochemical properties were characterized by cyclic voltammetry in 1 M H2SO4 electrolyte. GNS are considered as supporting materials which can provide a large number of active sites. The PANI nanofibers with diameter of 50 nm were homogeneously coated on the surface of GNS. The PANI/GNS composites exhibited a better electrochemical performance than the pure individual components. The PANI/GNS composites showed the highest specific capacitance 923 Fg?1 at 10 mVs?1 compared to 465 Fg?1 for pure PANI and 99 Fg?1 for GNS.  相似文献   

9.
We first present the preparation of a new class of polyaniline (PANI)/titanium nitride (TiN) nanocomposites by in situ chemical polymerization in the presence of TiN nanoparticles. It was found that nanocrystalline TiN with an average diameter of approximately 20 nm incorporated and dispersed homogeneously within the polymer matrix, leading to enhanced conductivity and electrochemical activity. The interaction between nanocrystalline TiN and the polymer matrix was characterized by XRD, FTIR, and UV-vis spectra. Interestingly, the morphology and structure of the PANI/TiN were controlled by the content of TiN nanoparticles in the composites. Structural changes are observed at TiN > or = 30 wt %, where the in situ synthesis results in rod-shape composite particles. The electrical and electrochemical properties of the nanocomposites were also affected by the structure. The mechanisms of the property changes with the TiN contents are discussed. The structural difference was used to explain the different activation energies for the conductance process in emeraldine base (EB)/TiN composites.  相似文献   

10.
The carbon nanotube/polyaniline (CNT/PANI) composites have important potential applications as the electrodes in energy storage devices for their attractive electrochemical properties. In this work, we report a novel method to prepare the interesting paper-like CNT/PANI composites by using the CNT network as the template. Compared with the conventional brittle CNT/PANI composites, these paper-like composites were much thin and flexible. This work demonstrates a new approach, which may transform a brittle polymer into flexible films. Meanwhile, these film electrodes showed much superior electrochemical performance such as higher specific capacitance, lower internal resistivity, and more stability under different current loads. These paper-like composite electrodes have promising applications in new kinds of energy storage devices.  相似文献   

11.
12.
Composite membranes were prepared by chemical polymerization of a thin layer of polyaniline (PANI) in the presence of a high oxidant concentration on a single face of a sulfonated cation-exchange membrane (CEM) and quaternary aminated anion-exchange membrane (AEM). IR and SEM studies for both types of membranes confirmed PANI loading on the ion-exchange membranes. PANI composite ion-exchange membranes were characterized as a function of the polymerization time by ion-exchange capacity, coating density, and membrane conductance measurements. Membrane potential measurements were performed in various electrolyte solutions in order to observe the selectivity of these membranes for different types of counterions. Membrane potential data in conjunction with membrane conductance data was interpreted on the basis of frictional considerations between membrane matrix and solute. Electrodialysis experiments, using PANI composite ion-exchange membranes with 4 h polymerization time, were performed in single and mixed electrolyte solutions for observing electromigration of solute across PANI composite ion-exchange membranes. Relative dialytic rates of Na(2)SO(4), CaCl(2), and CuCl(2) were estimated with reference to NaCl on the basis of electrodialysis experiments and it was concluded that it is possible to separate different electrolytes using PANI composite ion-exchange membranes.  相似文献   

13.
A stepwise deposition method was employed to create ordered polyaniline (PANI) nanowires with remarkably enhanced capacitance. Cyclic voltammetry, AC impedance, and galvanostatic charge/discharge cycling were employed to investigate the electrochemical performance of the PANI electrodes. The PANI-deposited electrode exhibits much higher capacitance than those prepared by one-step deposition method, which were mainly contributed from the unique nano structure of PANI and the increased biological, economical, and technical surface areas. The superior capacitive behaviors of the nano PANI electrodes show great potential in preparation of high efficient electrochemical capacitors or rechargeable batteries.  相似文献   

14.
The use of an aerosol delivery system enabled fluorine-doped tin dioxide films to be formed from monobutyltin trichloride methanolic solutions at 350-550 °C with enhanced functional properties compared with commercial standards. It was noted that small aerosol droplets (0.3 μm) gave films with better figures of merit than larger aerosol droplets (45 μm) or use of a similar precursor set using atmospheric pressure chemical vapour deposition (CVD) conditions. Control over the surface texturing and physical properties of the thin films were investigated by variation in the deposition temperature and dopant concentration. Optimum deposition conditions for low-emissivity coatings were found to be at a substrate temperature of about 450 °C with a dopant concentration of 1.6 atm% (30 mol% F:Sn in solution), which resulted in films with a low visible light haze value (1.74%), a high charge-carrier mobility (25 cm(2) V s(-1)) and a high charge-carrier density (5.7×10(20) cm(-3)) resulting in a high transmittance across the visible (≈80%), a high reflectance in the IR (80% at 2500 nm) and plasma-edge onset at 1400 nm. Optimum deposition conditions for coatings with applications as top electrodes in thin film photovoltaics were found to be a substrate temperature of about 500 °C with a dopant concentration of 2.2 atm% (30 mol% F:Sn in solution), which resulted in films with a low sheet resistance (3 Ω sq(-1)), high charge-carrier density (6.4×10(20) cm(-3)), a plasma edge onset of 1440 nm and the films also showed pyramidal surface texturing on the micrometer scale which corresponded to a high visible light haze value (8%) for light scattering and trapping within thin film photovoltaic devices.  相似文献   

15.
We demonstrate for the first time an interfacial polymerization method for the synthesis of high-quality polyaniline-modified graphene nanosheets (PANI/GNs), which represents a novel type of graphene/polymer heterostructure. The interfacial polymerization at a liquid-liquid interface allows PANI to grow uniformly on the surface of the GNs. An ultra-high loading of Pt nanoparticles was then controllably deposited on the surface of the PANI/GNs to form a Pt/PANI/GNs hybrid. The obtained composites were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The Pt/PANI/GNs hybrid shows excellent electrocatalytic activity toward methanol oxidation and oxygen reduction. H(2)O(2) and glucose were used as two representative analytes to demonstrate the sensing performance of a Pt/PANI/GNs-modified electrode. It is found that this sensing element shows high sensitivity and a low detection limit for H(2)O(2) and glucose. The results demonstrate that the Pt/PANI/GNs hybrid may be an attractive and advanced electrode material with potential applications in the construction of electrochemical sensors and biosensors.  相似文献   

16.
Films of highly oriented alpha-zirconium phosphate and polyaniline-intercalated zirconium phosphate with controllable thickness in the micrometer range were grown anodically on Pt electrodes. To optimize the electrodeposition conditions, the exfoliation of alpha-zirconium phosphate by tetrabutylammonium (TBA) salts was investigated in several nonaqueous solvents. Acetonitrile was found to be the best solvent for making crack-free, oriented films because of its high vapor pressure, low viscosity, and relatively high permittivity. With TBA salts of neutral or weakly acidic anions (TBACl, TBABr, TBAI, TBA(HSO4), or TBA(H2PO4)), full exfoliation did not occur and alpha-zirconium phosphate and/or polyaniline were deposited as rough films. With basic anions (TBAF or TBAOH), dense, adherent films were obtained. X-ray diffraction patterns of the films showed that they were highly oriented along the stacking axis. The thickness could be controlled, up to about 40 microm, by limiting the time of the electrodeposition reaction. At monomer concentrations below 1.0 x 10(-2) mol/dm3, the emeraldine form of the intercalated polymer was obtained. Electrodeposition thus provides a thick film alternative to layer-by-layer assembly for intercalation compounds of alpha-zirconium phosphate with a conducting polymer.  相似文献   

17.
When a laser with 543, 668 or 790±50 nm was used to irradiate the reduced polyaniline film on an indium tin oxide electrode in hydrochloric acid, the light was scattered in all directions. The intensity of the scattered light decreased with increase in the detection angle up to the right angle. When the electrode potential was scanned between the insulating and the conducting domain, the intensity varied sigmoidally with hysteresis. The intensity increased with a decrease in the absorbance. The scattering of the light can be ascribed to multiple reflection, luminescence, or Rayleigh scattering. The spectra of the scattered light was identical with that of the incident light, suggesting the absence of luminescence. The intensity increased with an increase in thickness of the film, indicating a negligible contribution of multiple reflection. Since the volume of the oxidized film is larger than that of the reduced one, the film synthesized in the oxidized state is deformed by the electrode reduction. Then, the film density becomes locally inhomogeneous and this may give rise to the Rayleigh scattering. The potential-variation of the light scattering occurred at a more negative potential than that of the absorbance at 310 nm and of the current did.  相似文献   

18.
Polyfluoroaniline (PFANI)/organosiloxane hybrid films were directly prepared from PFANI emulsions and γ-glycidoxypropyltrimethoxysilane (GPTMS) through a sol–gel method. The influence of GPTMS/FANI molar ratios on the morphology and properties of PFANI/GPTMS hybrid films was characterized by fourier-transform infrared, scanning electron microscopy, thermo gravimetric, contact angle measurement and potentiodynamic polarization analysis. It was found that the hybrid films are highly water repellent. In addition, increasing the GPTMS content could significantly improve the thermal behavior and corrosion resistant ability of the hybrid films. However, the water repellency decreases slowly as the GPTMS/FANI molar ratio increases.  相似文献   

19.
陆云 《高分子科学》2015,33(5):732-742
Composites of polyaniline(PAn) and epoxide polysiloxane(EPSi) are reported for the first time. EPSi is designed, synthesized and N-grafted onto the PAn backbone through covalent bonds. As-prepared EPSi-g-PAn composites are soluble in organic solvents and the corresponding films can be easily produced via a simple solution-casting procedure. The composite films combine the mechanical characteristics of EPSi and the chemical properties of PAn, enabling the facile introduction of the noble metal particles. The successful fabrication of the composites is confirmed by the investigation of the molecular structure, crystalline structure and microstructure of the materials. The resulting composite films containing noble metal particles are employed as the catalysts for the hydrogenation of phenol to produce cyclohexanone, which exhibit the convenience and recyclability for usage as well as the high catalytic activities, including the conversion ratio of 97%-100% and the selectivity as high as 84%-98%. The present work not only provides a new method to improve the processability of the conducting polymers but also describes a kind of composite materials that may display outstanding preformances in industrial catalysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号