首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Lightweight magnesium alloys, such as AZ31, constitute alternative materials of interest for many industrial sectors such as the transport industry. For instance, reducing vehicle weight and thus fuel consumption can actively benefit the global efforts of the current environmental industry policies. To this end, several research groups are focusing their experimental efforts on the development of advanced Mg alloys. However, comparatively little computational work has been oriented towards the simulation of the micromechanisms underlying the deformation of these metals. Among them, the model developed by Staroselsky and Anand [Staroselsky, A., Anand, L., 2003. A constitutive model for HCP materials deforming by slip and twinning: application to magnesium alloy AZ31B. International Journal of Plasticity 19 (10), 1843–1864] successfully captured some of the intrinsic features of deformation in Magnesium alloys. Nevertheless, some deformation micromechanisms, such as cross-hardening between slip and twin systems, have been either simplified or disregarded. In this work, we propose the development of a crystal plasticity continuum model aimed at fully describing the intrinsic deformation mechanisms between slip and twin systems. In order to calibrate and validate the proposed model, an experimental campaign consisting of a set of quasi-static compression tests at room temperature along the rolling and normal directions of a polycrystalline AZ31 rolled sheet, as well as an analysis of the crystallographic texture at different stages of deformation, has been carried out. The model is then exploited by investigating stress and strain fields, texture evolution, and slip and twin activities during deformation. The flexibility of the overall model is ultimately demonstrated by casting light on an experimental controversy on the role of the pyramidal slip 〈c + a〉 versus compression twinning in the late stage of polycrystalline deformation, and a failure criterion related to basal slip activity is proposed.  相似文献   

2.
We propose a set of models for the post-irradiation deformation response of polycrystalline FCC metals. First, a defect- and dislocation-density based evolution model is developed to capture the features of irradiation-induced hardening as well as intra-granular softening. The proposed hardening model is incorporated within a rate-independent single crystal plasticity model. The result is a non-homogeneous deformation model that accounts for defect absorption on the active slip planes during plastic loading. The macroscopic non-linear constitutive response of the polycrystalline aggregate of the single crystal grains is then obtained using a micro–macro transition scheme, which is realized within a Jacobian-free multiscale method (JFMM). The Jacobian-free approach circumvents explicit computation of the tangent matrix at the macroscale by using a Newton–Krylov process. This has a major advantage in terms of storage requirements and computational cost over existing approaches based on homogenized material coefficients in which explicit Jacobian computation is required at every Newton step. The mechanical response of neutron-irradiated single and polycrystalline OFHC copper is studied and it is shown to capture experimentally observed grain-level phenomena.  相似文献   

3.
A stochastic crystal plasticity model is proposed and applied within the rate-independent regime. As opposed to conventional deterministic algorithms wherein multiple slip systems are activated and redundant constraints may exist, the new Monte Carlo plasticity (MCP) paradigm is based on a stochastic chain of singly activated slip systems and thus avoids the possible ill-condition associated with multi-slip algorithms. The choice of the activated slip system is made at each Monte Carlo (MC) step based on the Metropolis algorithm. The MCP model is implemented within a Material Point Method (MPM) as a constitutive model to capture the elasto-plastic behavior of polycrystalline materials. A comparison with a commonly used singular value decomposition (SVD) algorithm indicates that MCP offers superior computational efficiency while maintaining comparable accuracy.  相似文献   

4.
Macro slip theory of plasticity for polycrystalline solids   总被引:1,自引:0,他引:1  
A macro slip theory is presented in this paper. Four independent slip systems are proposed for polycrystalline solids. Each slip system consists of a slip plane which lies on a face of the octahedron in stress space and a slip direction which is coincident with shear stress acting on the same face of the octahedron. It is proved that for proportional loading, present results are identical with the classical flow theory of plasticity. For nonproportional loading, the macro slip theory shows good predicting ability. The calculated results are in good agreement with the experimental data. The project supported by Chinese Academy of Science  相似文献   

5.
A viscoplastic constitutive model for Hastelloy-X single crystal material is developed based on crystallographic slip theory. The constitutive model was constructed for use in a viscoplastic self-consistent model for isotropic Hastelloy-X polycrystalline material, which has been described in a recent publication. It is found that, by using the slip geometry known from the metallurgical literature, the anisotropic response can be accurately predicted. The model was verified by using tension and torsion data taken at 982°C (1800°F). The constitutive model used on each slip system is a simple unified visoplastic power law model in which weak latent interaction effects are taken into account. The drag stress evolution equations for the octahedral system are written in a hardening/recovery format in which both hardening and recovery depend on separate latent interaction effects between the octahedral crystallographic slip systems. The strain rate behavior of the single crystal material is well correlated by the constitutive model in uniaxial and torsion tests, but it is necessary to include latent information effects between the octahedral slip systems in order to obtain the best possible representation of biaxial cyclic strain rate behavior. Finally, it was observed that the single crystal exhibited dynamic strain aging at 871°C (1600°F). Similar dynamic strain aging occurs at 649°C (1200°F) in the polycrystalline version of the alloy.  相似文献   

6.
Interactions between dislocations and grain boundaries play an important role in the plastic deformation of polycrystalline metals. Capturing accurately the behaviour of these internal interfaces is particularly important for applications where the relative grain boundary fraction is significant, such as ultra fine-grained metals, thin films and micro-devices. Incorporating these micro-scale interactions (which are sensitive to a number of dislocation, interface and crystallographic parameters) within a macro-scale crystal plasticity model poses a challenge. The innovative features in the present paper include (i) the formulation of a thermodynamically consistent grain boundary interface model within a microstructurally motivated strain gradient crystal plasticity framework, (ii) the presence of intra-grain slip system coupling through a microstructurally derived internal stress, (iii) the incorporation of inter-grain slip system coupling via an interface energy accounting for both the magnitude and direction of contributions to the residual defect from all slip systems in the two neighbouring grains, and (iv) the numerical implementation of the grain boundary model to directly investigate the influence of the interface constitutive parameters on plastic deformation. The model problem of a bicrystal deforming in plane strain is analysed. The influence of dissipative and energetic interface hardening, grain misorientation, asymmetry in the grain orientations and the grain size are systematically investigated. In each case, the crystal response is compared with reference calculations with grain boundaries that are either ‘microhard’ (impenetrable to dislocations) or ‘microfree’ (an infinite dislocation sink).  相似文献   

7.
A large strain elastic-viscoplastic self-consistent (EVPSC) model for polycrystalline materials is developed. At single crystal level, both the rate sensitive slip and twinning are included as the plastic deformation mechanisms, while elastic anisotropy is accounted for in the elastic moduli. The transition from single crystal plasticity to polycrystal plasticity is based on a completely self-consistent approach. It is shown that the differences in the predicted stress-strain curves and texture evolutions based on the EVPSC and the viscoplastic self-consistent (VPSC) model proposed by Lebensohn and Tomé (1993) are negligible at large strains for monotonic loadings. For the deformations involving unloading and strain path changes, the EVPSC predicts a smooth elasto-plastic transition, while the VPSC model gives a discontinuous response due to lack of elastic deformation. It is also demonstrated that the EVPSC model can capture some important experimental features which cannot be simulated by using the VPSC model.  相似文献   

8.
Single crystal plasticity based on a representative characteristic length is proposed and introduced into a homogenization approach based on finite element analyses, which are applied to characterization of distinctive yielding behaviors of polycrystalline metals, yield-point elongation, and grain size strengthening. The computational manner for an implicit stress update is derived with the framework of a standard multi-surface plasticity at finite strain, where the evolution of the characteristic lengths are numerically converted from the accumulated slips of all of slip systems by exploiting the mathematical feature of the characteristic length as the intermediate function of the plastic internal variables. Furthermore, a constitutive model for a single crystal reproduces the stress–strain curve divided into three parts. Using two-scale finite element analysis, the macroscopic stress–strain response with yield-point elongation under a situation of low dislocation density is reproduced. Finally, the grain size effect on the yield strength is analyzed with modeling of the grain boundary in the context of the proposed constitutive model and is discussed from both macroscopic and microscopic views.  相似文献   

9.
The objective of this contribution is to develop an elastic-plastic-damage constitutive model for crystal grain and to incorporate it with two-scale finite element analyses based on mathematical homogenization method, in order to characterize the macroscopic tensile strength of polycrystalline metals. More specifically, the constitutive model for single crystal is obtained by combining hyperelasticity, a rate-independent single crystal plasticity and a continuum damage model. The evolution equations, stress update algorithm and consistent tangent are derived within the framework of standard elastoplasticity at finite strain. By employing two-scale finite element analysis, the ductile behaviour of polycrystalline metals and corresponding tensile strength are evaluated. The importance of finite element formulation is examined by comparing performance of several finite elements and their convergence behaviour is assessed with mesh refinement. Finally, the grain size effect on yield and tensile strength is analysed in order to illustrate the versatility of the proposed two-scale model.  相似文献   

10.
The transient shear response of a linear molten polymer (linear low-density polyethylene) in the nonlinear domain was studied using a true shear (sliding plate) rheometer with different gap spacings to detect slip effects. It was found that nonlinear viscoelasticity is further complicated by wall slip phenomena. Experimental evidence suggested that static slip models coupled with Wagner’s constitutive equation cannot adequately describe the experimental data at large and fast shear deformations. A new dynamic slip model involving multiple slip relaxation times is proposed in this paper, together with a method to assess the model parameters. Significant improvement in predicting the stress response is demonstrated by several examples of start-up of steady shear and large-amplitude oscillatory tests of a linear low-density polyethylene.  相似文献   

11.
In this paper, a crystal plasticity based constitutive model (Yu et al., 2013) is extended to describe the rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy by considering the internal heat production. Two sources of internal heat productions are included in the proposed model, i.e., the mechanical dissipations of inelastic deformation and the transformation latent heat in the NiTi shape memory alloy. With an assumption of uniform temperature field in the alloy specimen, a simplified evolution law of temperature field is obtained by the first law of thermodynamics and the heat boundary conditions. An explicit scale-transition rule is adopted to extend the proposed single crystal model to the polycrystalline version. The capability of the extended polycrystalline model to describe the rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy is verified by comparing the predictions with the corresponding experimental ones. The comparison demonstrates that the proposed constitutive model considering the internal heat production predicts the rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy fairly well.  相似文献   

12.
Deformation micromechanisms of a Ti–6Al–4V alloy under fatigue loading at room temperature are studied using a three-dimensional crystal plasticity constitutive model. The model employs a minimum set of fitting parameters based on experimental data for Ti–6Al–4V. Single slip is strongly favored through a softening law that affects mainly the driving force for slip on the first activated slip system. Cyclic deformation behavior at the macroscopic scale and at the local scale of grains is analyzed through the simulation of 20 cycles of fatigue on a polycrystalline structure of 900 randomly oriented grains. The progressive activation of slip (basal, prismatic, and pyramidal) is analyzed and compared to experimental observations.  相似文献   

13.
Single crystal constitutive equations based on dislocation density (SCCE-D) were developed from Orowan’s strengthening equation and simple geometric relationships of the operating slip systems. The flow resistance on a slip plane was computed using the Burger’s vector, line direction, and density of the dislocations on all other slip planes, with no adjustable parameters. That is, the latent/self-hardening matrix was determined by the crystallography of the slip systems alone. The multiplication of dislocations on each slip system incorporated standard 3-parameter dislocation density evolution equations applied to each slip system independently; this is the only phenomenological aspect of the SCCE-D model. In contrast, the most widely used single crystal constitutive equations for texture analysis (SCCE-T) feature 4 or more adjustable parameters that are usually back-fit from a polycrystal flow curve. In order to compare the accuracy of the two approaches to reproduce single crystal behavior, tensile tests of single crystals oriented for single slip were simulated using crystal plasticity finite element modeling. Best-fit parameters (3 for SCCE-D, 4 for SCCE-T) were determined using either multiple or single slip stress–strain curves for copper and iron from the literature. Both approaches reproduced the data used for fitting accurately. Tensile tests of copper and iron single crystals oriented to favor the remaining combinations of slip systems were then simulated using each model (i.e. multiple slip cases for equations fit to single slip, and vice versa). In spite of fewer fit parameters, the SCCE-D predicted the flow stresses with a standard deviation of 14 MPa, less than one half that for the SCCE-T conventional equations: 31 MPa. Polycrystalline texture simulations were conducted to compare predictions of the two models. The predicted polycrystal flow curves differed considerably, but the differences in texture evolution were insensitive to the type of constitutive equations. The SCCE-D method provides an improved representation of single-crystal plastic response with fewer adjustable parameters, better accuracy, and better predictivity than the constitutive equations most widely used for texture analysis (SCCE-T).  相似文献   

14.
The plastic anisotropy of sheet metal is usually caused by preferred orientation of grains, developed by mechanical deformation and thermal treatment. In the present study, a Taylor-like polycrystal model suggested by Asaro and Needleman is applied to investigate the evolution of the anisotropic behavior of a face centered cubic (FCC) polycrystalline metal, which is considered having {111} (110) slip systems, by stretching it along an arbitrary direction after it has undergonea plane-strata compression that rationally simulates the cold rolling process of FCC polycrystalline pure aluminium. By using the Taylor-like polycrystal model, pole figures are obtained to describe the texture development of polycrystalline aggregate after plane-strain compression, and then the plastic anisotropy of polycrystalline aggregate is evaluated by stretching the polycrystalline aggregate in different direction in term of yield stress. According to the results, the contours of longitudinal flow stress in three-dimensional orientation space are given and analyzed. Experiment results similar to the prediction of planar anisotropy can be found inthe literature written by Takahashi et al. that in directly show the correctness of the prediction of non-planar plastic anisotropy by this analysis.  相似文献   

15.
In this paper a crystal plasticity-based crack nucleation model is developed for polycrystalline microstructures undergoing cyclic dwell loading. The fatigue crack nucleation model is developed for dual-phase titanium alloys admitting room temperature creep phenomenon. It is a non-local model that accounts for the cumulative effect of slip on multiple slip systems, and involves evolving mixed-mode stresses in the grain along with dislocation pileups in contiguous grains. Rate dependent, highly anisotropic behavior causes significant localized stress concentration that increases with loading cycles. The crystal plasticity finite element (CPFE) model uses rate and size-dependent anisotropic elasto-crystal plasticity constitutive model to account for these effects. Stress rise in the hard grain is a consequence of time-dependent load shedding in adjacent soft grains, and is the main cause of crack nucleation in the polycrystalline titanium microstructure. CPFE simulation results are post-processed to provide inputs to the crack nucleation model. The nucleation model is calibrated and satisfactorily validated using data available from acoustic microscopy experiments for monitoring crack evolution in dwell fatigue experiments.  相似文献   

16.
A micromechanics-based finite element model for the constitutive behavior of polycrystalline ferromagnets is developed. In the model, the polycrystalline solid is assumed to comprise numerous single crystals with randomly distributed crystallographic orientations, and the single crystals, in turn, consist of ferromagnetic domains, each of which is represented by a cubic element. The dipole directions of the domains are randomly assigned to simulate the crystallographic nature of ferromagnetic polycrystals. A switching criterion for the domains is specified at the microscopic level. The macroscopic constitutive behavior is obtained by averaging the microscopic/local behavior of each domain. The developed model has been applied to the simulation of a ferromagnetic material. With appropriate material parameters adopted, hysteresis loops of the predicted magnetic induction versus magnetic field and those of the strain versus magnetic field are shown to agree well with experimental observations.The project supported by the National Natural Science Foundation of China (90205030, 10472088, 10425210), the National Basic Research Program of China (2006CB601202) and the State Administration of the Foreign Experts Affairs Through the “111” Project (B06024) The English text was polished by Yunming Chen.  相似文献   

17.
A micromechanical model of the early fatigue damage initiation is proposed based on the slip theory. For each slip system, a local micro-damage variable is introduced to describe globally all phenomena related to the level lower than the crystallographic slip system, such as dislocations, atoms, molecules, lattice defects, etc., of FCC polycrystalline materials. This transgranular damage variable is fully coupled with micro inelastic constitutive equations. It is supposed that the local damage appears when the dislocation density reaches some critical values. The obtained model is devoted to describing the cyclic behavior of metallic materials under proportional and non-proportional loading paths neglecting the quasi-unilateral effect as well as the localization of the fatigue damage on the free surface of the specimen.  相似文献   

18.
A micromechanical model using the scale transition method in elastoviscoplasticity has been developed to describe the behaviour of those austenitic steels that display a TWIP effect. A physically based constitutive equation at the grain scale is proposed considering two inelastic strain modes: crystallographic slip and twinning. The typical organizations of microtwins observed in electron microscopy are considered, and the twin–slip as well as the twin–twin interactions are accounted for. The parameters for slip are first fitted on the uniaxial tensile response obtained at intermediate temperatures (when twinning is inhibited). Then, the parameters associated with twinning are identified using the stress–strain curve at room temperature. The simulated results in both macro and micro scales are in good agreement with experimentally obtained results.  相似文献   

19.
We present a multiscale model for anisotropic, elasto-plastic, rate- and temperature-sensitive deformation of polycrystalline aggregates to large plastic strains. The model accounts for a dislocation-based hardening law for multiple slip modes and links a single-crystal to a polycrystalline response using a crystal plasticity finite element based homogenization. It is capable of predicting local stress and strain fields based on evolving microstructure including the explicit evolution of dislocation density and crystallographic grain reorientation. We apply the model to simulate monotonic mechanical response of a hexagonal close-packed metal, zirconium (Zr), and a body-centered cubic metal, niobium (Nb), and study the texture evolution and deformation mechanisms in a two-phase Zr/Nb layered composite under severe plastic deformation. The model predicts well the texture in both co-deforming phases to very large plastic strains. In addition, it offers insights into the active slip systems underlying texture evolution, indicating that the observed textures develop by a combination of prismatic, pyramidal, and anomalous basal slip in Zr and primarily {110}〈111〉 slip and secondly {112}〈111〉 slip in Nb.  相似文献   

20.
In this work, a single crystal constitutive law for multiple slip and twinning modes in single phase hcp materials is developed. For each slip mode, a dislocation population is evolved explicitly as a function of temperature and strain rate through thermally-activated recovery and debris formation and the associated hardening includes stage IV. A stress-based hardening law for twin activation accounts for temperature effects through its interaction with slip dislocations. For model validation against macroscopic measurement, this single crystal law is implemented into a visco-plastic-self-consistent (VPSC) polycrystal model which accounts for texture evolution and contains a subgrain micromechanical model for twin reorientation and morphology. Slip and twinning dislocations interact with the twin boundaries through a directional Hall–Petch mechanism. The model is adjusted to predict the plastic anisotropy of clock-rolled pure Zr for three different deformation paths and at four temperatures ranging from 76 K to 450 K (at a quasi-static rate of 10−3 1/s). The model captures the transition from slip-dominated to twinning-dominated deformation as temperature decreases, and identifies microstructural mechanisms, such as twin nucleation and twin–slip interactions, where future characterization is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号