首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A molecule-like substituent effect on redox formal potentials in the nanoparticle series Au(38)(SPhX)(24) has been discovered. Electron-withdrawing "X" substituents energetically favor reduction and disfavor oxidation, and give formal potentials that correlate with Hammett substituent constants. The ligand monolayer of the nanoparticles is shown, thereby, to play a strong role in determining electronic energies of the nanoparticle core and is more than simply a protecting or capping layer. The substituent effect does not, however, detectably change the HOMO-LUMO gap energy, being identical for the HOMO and LUMO levels and presumably inductive in nature.  相似文献   

2.
In this paper, the electric properties of polar nanoparticles are examined. Special attention is paid to the terminology, classification and the physical bases of the different electric moments. A short history of the electro-optic studies of dipole moments of nanoparticles and the electro-optic Conferences is presented. The connection of the polar properties with the particle electric charge is considered. The potential of the colloid electro-optics for studying the properties of anisometric, anisotropic polar nanoparticles is discussed in details. Examples of such studies are presented. A comparative analysis is made of the potential of dielectric, electro-optic and dielectrophoretic measurements for studying the electric properties, size, shape and structure of polar nanoparticles.  相似文献   

3.
The replacement of phenylethanethiolate (SC2Ph) ligands on 1.1 nm (core diameter) Au38(SC2Ph)24 monolayer-protected clusters (MPCs) with varied amounts of triphenylphosphine (PPh3) is investigated in methylene chloride. UV-vis spectra suggest that changes in the MPC Au core size occur when large amounts (> 10 equiv moles per cluster) of PPh3 are reacted with Au38(SC2Ph)24. 1H and 31P NMR spectra following the addition of smaller amounts (< 5 equiv moles) of PPh3 indicate that the reaction liberates a AuISC2Ph complex, as opposed to a SC2Ph thiol, disulfide, or anion. A 1H NMR kinetic study shows that the exchange is surprisingly rapid, even faster than exchanges of thiolates with other thiolates, at room temperature and in air. The reaction is slowed when cooled or conducted under Ar. The difference in potentials of the initial one-electron voltammetric reduction and oxidation of Au38(SC2Ph)24 decreases slightly upon reaction with small amounts of PPh3.  相似文献   

4.
Ligand exchange reaction is a very important and useful tool for preparing functionalised metal nanoparticles. Understanding the mechanism of this process is essential for rational design of nanoparticle-based devices. However the underlying chemistry was found to be very rich. In this article, we summarise the research efforts of several groups to unravel the mechanisms of ligand exchange reaction, and discuss implications for future developments.  相似文献   

5.
6.
The well-defined one-electron steps in the voltammetry of solutions of the nanoparticles Au38(SC2Ph)24 and Au140(SC6)53 (SC2Ph = phenylethanethiolate; SC6 = hexanethiolate) enable preparation of solutions containing, for example, Au38(SC2Ph)24 and Au38(SC2Ph)24+(ClO4)- nanoparticles in known relative proportions. From these solutions can be cast dry, mixed-valent films demonstrably containing the same proportions. Electronic conduction in such mixed-valent films is shown to occur by a bimolecular electron self-exchange reaction at a rate proportional to the concentration product, [Au38][Au38+]. The observed Au38(+/0) rate constant, approximately 2 x 10(6) M(-1) s(-1), is much smaller than that previously observed for Au140(+/0) films (ca. 4 x 10(9) M(-1) s(-1); Wuelfing, W. P.; et al. J. Am. Chem. Soc. 2000, 122, 11465). To our knowledge, this is the first example of a significant size effect in metal nanoparticle electron-transfer dynamics. Thermal activation parameters for the electron-hopping conductivities of the two nanoparticles reveal that the rate difference is mainly caused by energy barriers (EA) for Au38(+/0) electron transfers that are larger by approximately 3-fold than those for Au140(+/0) electron transfers (ca. 20 vs 7 kJ/mol). Differences in pre-exponential terms in the activation equations for the two nanoparticles are a smaller contributor to the rate constant difference and can be partly ascribed to differences in tunneling distances.  相似文献   

7.
This paper describes electrochemical and spectroscopic properties of a well-characterized, synthetically accessible, 1.1 nm diam Au nanoparticle, Au(38)(PhC(2)S)(24), where PhC(2)S is phenylethylthiolate. Properties of other Au(38) nanoparticles made by exchanging the monolayer ligands with different thiolate ligands are also described. Voltammetry of the Au(38) nanoparticles in CH(2)Cl(2) reveals a 1.62 V energy gap between the first one-electron oxidation and the first reduction. Based on a charging energy correction of ca. 0.29 V, the indicated HOMO-LUMO gap energy is ca. 1.33 eV. At low energies, the optical absorbance spectrum includes peaks at 675 nm (1.84 eV) and 770 nm (1.61 eV) and an absorbance edge at ca. 1.33 eV that gives an optical HOMO-LUMO gap energy that is consistent with the electrochemical estimate. The absorbance at lowest energy is bleached upon electrochemical depletion of the HOMO level. The complete voltammetry contains two separated doublets of oxidation waves, indicating two distinct molecular orbitals, and two reduction steps. The ligand-exchanged nanoparticle Au(38)(PEG(135)S)(13)(PhC(2)S)(11), where PEG(135)S is -SCH(2)CH(2)OCH(2)CH(2)OCH(3), exhibits a broad (1.77-0.89 eV) near-IR photoluminescence band resolvable into maxima at 902 nm (1.38 eV) and 1025 nm (1.2 eV). Much of the photoluminescence occurs at energies less than the HOMO-LUMO gap energy. A working model of the energy level structure of the Au(38) nanoparticle is presented.  相似文献   

8.
Pulse radiolysis of an aqueous solution of mono-valent thallium ion and mixed solutions of Tl+/Ag+ in the presence of various amino polycarboxylic acids such as trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (DCTA), diethylenetriaminepentaacetic acid (DTPA), N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) and triethylenetetraminehexaacetic acid (TTHA) has been carried out. Abnormal valence states of Tl ions were generated. It is concluded that DCTA, DTPA, HEDTA and TTHA decrease the redox potential of Tl ions in aqueous solutions. It was observed that the electron transfer from complexed Tl2+ to Ag+ varied in the range 7.5 × 108 to 1.0 × 109, depending on the type of complexing ligand. Electron transfer from Tl2+ to Ag+ lead to the formation of silver atoms, which agglomerate further to form silver colloid.  相似文献   

9.
The approximation made in the calculation of molecular dipole moments by including only the point charges and the atomic dipoles is evaluated in different all-valence (or all)-electrons MO procedures. In the CNDO method, the use of the exact formula after retransformation of the atomic basis into Slater orbitals gives poorer values than the Pople-Segal's procedure.  相似文献   

10.
11.
Molecular dipole moments and polarizabilities, as well as their geometrical derivatives, are given analytical expressions for multiconfiguration self-consistent-field and configuration interaction wavefunctions. By considering the response of the electronic wavefunction induced by electric field and geometrical displacement terms in the Hamiltonian, the response of the total electronic energy to these terms is analyzed. The dipole moment and polarizability are then identified through the factors in the energy which are linear and quadratic in the electric field, respectively. Derivatives with respect to molecular deformation are obtained by identifying factors in these moments which are linear, quadratic, etc., in the distortion parameter. The analytical derivative expressions obtained here are compared to those which arise through finite-difference calculations, and it is shown how previous configuration-interaction-based finite difference dipole moment and polarizability derivatives are wrong. The proper means of treating such derivatives are detailed.  相似文献   

12.
13.
The Stark effect has been observed in the rotational spectra of several gas-phase amine-hydrogen halide complexes and the following electric dipole moments have been determined: H(3)(15)N-H(35)Cl (4.05865 +/- 0.00095 D), (CH(3))(3)(15)N-H(35)Cl (7.128 +/- 0.012 D), H(3)(15)N-H(79)Br (4.2577 +/- 0.0022 D), and (CH(3))(3)(15)N-H(79)Br (8.397 +/- 0.014 D). Calculations of the binding energies and electric dipole moments for the full set of complexes R(n)()(CH(3))(3)(-)(n)()N-HX (n = 0-3; X = F, Cl, Br) at the MP2/aug-cc-pVDZ level are also reported. The block localized wave function (BLW) energy decomposition method has been used to partition the binding energies into contributions from electrostatic, exchange, distortion, polarization, and charge-transfer terms. Similarly, the calculated dipole moments have been decomposed into distortion, polarization, and charge-transfer components. The complexes studied range from hydrogen-bonded systems to proton-transferred ion pairs, and the total interaction energies vary from 7 to 17 kcal/mol across the series. The individual energy components show a much wider variation than this, but cancellation of terms accounts for the relatively narrow range of net binding energies. For both the hydrogen-bonded complexes and the proton-transferred ion pairs, the electrostatic and exchange terms have magnitudes that increase with the degree of proton transfer but are of opposite sign, leaving most of the net stabilization to arise from polarization and charge transfer. In all of the systems studied, the polarization terms contribute the most to the induced dipole moment, followed by smaller but still significant contributions from charge transfer. A significant contribution to the induced moment of the ion pairs also arises from distortion of the HX monomer.  相似文献   

14.
We discuss a method of taking into account the nonorthogonality of independent approximations for the electronic wave functions of states of a single symmetry type in the calculation of transition dipole moments. The effectiveness of the method is illustrated for the example of the electronic transition C2r-A2i of the molecule BO.Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 26, No. 2, pp. 215–217, March–April, 1990  相似文献   

15.
The dipole moments of furan and pyrrole in many electronically excited singlet states have been determined using coupled cluster theory including large one-electron basis sets. The inclusion of connected triple excitations is shown to uniformly decrease the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) excitation energies by 0.04-0.24 eV, with an average reduction of 0.08 eV. Using a basis set larger than DZP (++)D (double-zeta plus polarization augmented with atom- and molecule-centered diffuse functions) uniformly increases the computed EOM-CCSD excitation energies by 0.03-0.29 eV, with an average increase of 0.20 eV. The corresponding shifts in excited-state dipole moments are more erratic. Including connected triple excitations changes the computed dipole moments by an rms amount of 0.17 au. More importantly, using a larger basis set shifts the dipole moments by an rms amount of 0.52 au, with an increase or a decrease being equally likely. The CC dipole moments are compared to those from time-dependent density functional theory (TD-DFT) computed by Burcl, Amos, and Handy [ Chem. Phys. Lett. 2002, 355, 8]. For 29 excited states of furan and pyrrole, the predicted TD-DFT dipole moments differ from the CC results by rms amounts of 1.6 au (HCTH functional) and 1.5 au (B97-1 functional). Including the asymptotic correction to TD-DFT developed by Tozer and Handy [ J. Chem. Phys. 1998, 109, 10180; J. Comput. Chem. 1999, 20, 106] reduces the rms differences for both functionals to 1.2 au. If those Rydberg excited states with very large polarizabilities are excluded, the rms differences from the CC results for the remaining 17 excited states become 1.31 au (HCTH) and 0.88 au (B97-1). For asymptotically corrected functionals and this subset of states, the rms differences from the CC results are only 0.54 au (HCTHc) and 0.34 au (B97-1c). Thus, the Tozer-Handy asymptotic correction for TD-DFT significantly improves the predictions of excited-state dipole moments. For excited states without very large polarizabilities, good agreement is achieved between excited-state dipole moments computed by coupled cluster theory and by the asymptotically corrected B97-1c density functional.  相似文献   

16.
The near-infrared photoluminescence of monolayer-protected Au38 and Au140 clusters (MPCs) is intensified with exchange of nonpolar ligands by more polar thiolate ligands. The effect is general and includes as more polar in-coming ligands: thiophenolates with a variety of p-substituents; alkanethiolates omega-terminated by alcohol, acid, or quaternary ammonium groups; and thio-amino acids. Remarkably, place exchanges of the initial phenylethanethiolates on Au38 MPCs by p-substituted thiophenolates and thio-amino acids and of hexanethiolates on Au140 MPCs by omega-quaternary ammonium terminated undecylthiolates result in increases in the near-infrared (NIR) luminescence intensities that are linear with the number of new polar ligands. The increased intensities are systematically larger for thiophenolate ligands having more electron-withdrawing substituents. Analogous effects on intensities are observed in the NIR emission of Au140 MPCs upon place exchange of alkanethiolates with thiolates having short connecting alkanethiolate chains to quaternary ammonium and to omega-carboxylic acid termini, and with oxidative charging of the Au cores. The observations are consistent with sensitivity of the luminescence mechanism to any factor that enhances the electronic polarization of the bonds between the Au core atoms and their thiolate ligands. The luminescence is discussed in terms of a surface electronic excitation, as opposed to a core volume excitation.  相似文献   

17.
The dipole moments of the isomeric pairs of bromocrotonolactones and of chlorocrotonolactones were measured in benzene solutions at 25° along with those of butyrolactone and crotonolactone. Based on the observed moments of the last two compounds, theoretical calculations were made of the moments of these halocrotonolactones for both - and β-modifications. The comparison between the observed and calculated moments showed definitely that, of the isomeric pair of bromocrotonolactones, one having a greater moment 4·70 D and a lower melting point 57° is the -modification and the other isomer having a moment of 3·86 D and a melting point of 77° is the β-modification. Similarly, -chlorocrotonolactone shows a moment of 4·83 D and melts at 27° while the corresponding β-modification has a moment of 3·57 D and a melting point of 51–52·5°. The result is in good agreement with the conclusion derived from the infra-red absorptions of these compounds and affords an unequivocal evidence in favour of the correctness of the reasoning advanced by Gilman et al., by Whiting, and by Owen and Sultanbawa agains the presumption of Hill and his followers. Thus, the long pending problem on the constitutional formulae of isomeric - and β-halocrotonolactones has been settled.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号