共查询到20条相似文献,搜索用时 10 毫秒
1.
利用SAC/SAC-CI方法,使用D95++、6-311++g及cc-PVTZ等基组,对BH分子的基态(X1撞+)、第一简并激发态(A1装)及第二激发态(B1撞+)的平衡结构和谐振频率进行了优化计算.通过对三个基组计算结果的比较,得出了cc-PVTZ基组为三个基组中的最优基组的结论;使用cc-PVTZ基组,利用SAC的GSUM(groupsumofoperators)方法对基态(X1撞+),SAC-CI的GSUM方法对激发态(A1装和B1撞+)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X1撞+)、第一简并的激发态(A1装)和第二激发态(B1撞+)相对应的光谱常数(Be、琢e、棕e和棕e字e),结果与实验数据较为一致.其中基态、第一激发态与实验数据吻合得较好. 相似文献
2.
Xie Andong Shi Deheng Zhu Zunlue Ma Meizhong Xu Guoliang Zhu Zhenghe 《化学物理学报(中文版)》2005,18(5):776-780
The energies, equilibrium geometries and harmonic frequencies of the three electronic states (the ground state X 1Σ+, the first excitation state A 1Σ+ and the second excitation degenerate state B 1Π) of LiH molecule have been calculated by using the GSUM (Group Sum of Operators) method of SAC/ SAC-CI with the basis sets D95(d), 6-311G**, and cc-PVTZ. Comparing with the above-mentioned three basis sets, the conclusion is gained that the basis set D95(d) is the most suitable for the energy calculation of LiH molecule. The whole potential curves for these three electronic states are further scanned, using SAC/D95(d) method for the ground state and SAC-CI/D95(d) methods for the excited states. Murrell-Sorbie function were fitted using a least square and then the spectroscopy constants are calculated, which are in good agreement with the experimental data. 相似文献
3.
使用SAC/SAC-CI和D95++,6-311++g,6-311++g^**及D95(d)基组,分别对BF分子的基态X^1∑^+、第一简并激发态A^1∏和第二激发态B^1∑^+的平衡结构和谐振频率进行优化计算.对所有计算结果进行比较,得出6-311++g^**基组为最优基组.运用6-311++g^**基组和SAC方法对基态X^1∑^+,SAC-CI方法对激发态A^1∏和B^1∑^+进行单点能扫描计算,并用正规方程组拟合Murrell-Sorbie函数,得到相应电子态的势能函数解析式,由得到的势能函数计算了与X^1∑^+,A^1∏和B^1∑^+态相对应的光谱常数,结果与实验数据较为一致. 相似文献
4.
BH分子X 1Σ+、A 1Π和B 1Σ+ 态的势能函数 总被引:1,自引:0,他引:1
利用SAC/SAC-CI方法,使用D95++、6-311++g及cc-PVTZ等基组,对BH分子的基态(X 1Σ+)、第一简并激发态(A 1Π)及第二激发态(B 1Σ+)的平衡结构和谐振频率进行了优化计算. 通过对三个基组计算结果的比较,得出了cc-PVTZ基组为三个基组中的最优基组的结论;使用cc-PVTZ基组,利用SAC的GSUM(group sum of operators)方法对基态(X 1Σ+), SAC-CI的GSUM方法对激发态(A 1Π 和B 1Σ+)进行单点能扫描计算, 用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X 1Σ+)、第一简并的激发态(A 1Π)和第二激发态(X 1Σ+)相对应的光谱常数(Be、αe、ωe 和ωeχe),结果与实验数据较为一致. 其中基态、第一激发态与实验数据吻合得较好. 相似文献
5.
使用SAC/SAC-CI和D95++,6-311++g,6-311++g**及D95(d)基组,分别对BF分子的基态X1∑+、第一简并激发态A1∏和第二激发态B1∑+的平衡结构和谐振频率进行优化计算.对所有计算结果进行比较,得出6-311++g**基组为最优基组.运用6-311++g**基组和SAC方法对基态X1∑+,SAC-CI方法对激发态A1∏和B1∑+进行单点能扫描计算,并用正规方程组拟合Murrell-Sorbie函数,得到相应电子态的势能函数解析式,由得到的势能函数计算了与X1∑+,A1∏和B1∑+态相对应的光谱常数,结果与实验数据较为一致. 相似文献
6.
使用SAC/SAC-CI和D95++, 6-311++g, 6-311++g**及D95(d)基组, 分别对BF分子的基态X1Σ+、第一简并激发态A1Π和第二激发态B1Σ+的平衡结构和谐振频率进行优化计算. 对所有计算结果进行比较, 得出6-311++g**基组为最优基组. 运用6-311++g**基组和SAC方法对基态X1Σ+, SAC-CI方法对激发态A1Π和B1Σ+进行单点能扫描计算, 并用正规方程组拟合Murrell-Sorbie函数, 得到相应电子态的势能函数解析式, 由得到的势能函数计算了与X1Σ+, A1Π和B1Σ+态相对应的光谱常数, 结果与实验数据较为一致. 相似文献
7.
BH分子X1∑+、A1∏和B1∑+态的势能函数 总被引:2,自引:0,他引:2
利用SAC/SAC-CI方法,使用D95++、6-311++g及cc-PVTZ等基组,对BH分子的基态(X1∑+)、第一简并激发态(A1∏)及第二激发态(B1∑+)的平衡结构和谐振频率进行了优化计算.通过对三个基组计算结果的比较,得出了cc-PVTZ基组为三个基组中的最优基组的结论;使用cc-PVTZ基组,利用SAC的GSUM(group sum ofoperators)方法对基态(X1∑+),SAC-CI的GSUM方法对激发态(A1∏和B1∑+)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X1∑+)、第一简并的激发态(A1∏)和第二激发态(B1∑+)相对应的光谱常数(Be、αe、ωe和ωeXe),结果与实验数据较为一致.其中基态、第一激发态与实验数据吻合得较好. 相似文献
8.
利用群论及原子分子反应静力学的有关原理,推导了KH(KD)分子基态X1Σ+的电子态和合理的离解极限.采用Gaussian03程序包中的多种方法和基组,对KH(KD)分子基态X1Σ+的平衡结构和谐振频率进行了优化计算.通过比较计算结果,发现B3LYP为最优方法,6-311g(3df,3pd)为最佳基组.运用优选出的方法和基组对KH(KD)分子基态进行了单点势能扫描,然后分别采用Murrell-Sorbie函数及修正的Murrell-Sorbie+c6函数进行了非线性最小二乘拟合,得到了KH(KD)分子基态的势能函数和相应的光谱常数.计算结果表明,利用修正的Murrell-Sorbie+c6函数计算所得的光谱常数与实验数据吻合得更好. 相似文献
9.
采用密度泛函理论(DFT)的B3LYP方法和相对论有效原子实势理论模型(RECP),对UC2分子可能的结构进行优化计算,得到UC2分子稳定构型为角形C-U-C(C2v);由微观可逆性原理,判断了UC2分子的离解极限;并且导出了基态UC2分子(X 5B1)的多体项展式势能函数,其势能面等值图展现了C-U-C(C2v)稳定结构;根据势能面等值图,讨论了C+UC(X 3П)反应和U+C2(X 1∑+g)反应的势能面静态特征. 相似文献
10.
100公里以上的大气分子离子主要为NO~+。它的辐射特点及它与电子、原子或分子的相互作用,对于理解大气的化学过程具有特别重要的意义。为了研究这些过程,确定NO~+分子离子基态及其各个激发态的分子势能函数是非常重要的。精确的X~1Σ~+,A~1Ⅱ和a~3∑~+势能曲线已发表;基于光电子谱的研究发现了NO~+的其它激发态,但对于这些激发态的研究尤其是势能函数的研究不多。本文研究并导出NO~+的基态和10个激发态的势能函数。 相似文献
11.
12.
利用Gaussian03软件包,采用多种方法和多种基组对CCl和CCl2分子的基态结构进行优化计算,优选出B3P86/6-311+ G(3 df)方法对CCl分子进行计算得到基态为X2Ⅱ、键长RCCl=0.164 42 nm,谐振频率we=886.3062 cm-1;优选出B3P86/6-311G( 2df)方法对CC... 相似文献
13.
PdH2、YH2分子的结构与势能函数 总被引:6,自引:0,他引:6
用密度泛函理论的B3LYP方法,对钯和钇原子采用SDD收缩价基函数,氢原子采用6-311++G**全电子基函数,对PdH2和YH2体系的结构进行优化计算,得到PdH2分子最稳态为C2v构型,电子组态为1A1,平衡核间距RPdH=0.1692 nm,键角∠HPdH=29.4°,离解能De=5.5212 eV,基态简正振动频率:ν1(b2)=1470.1 cm-1、ν2(a1)=1007.9 cm-1、ν3(a1)=2907.0 cm-1.YH2分子最稳态也为C2v构型,电子组态2A1,RYH=0.1962 nm,∠HYH=114.3°,De=5.6691 eV,基态简正振动频率:ν1(b2)=1457.9 cm-1、ν2(a1)=476.0 cm-1、ν3(a1)=1506.3 cm-1.由微观过程的可逆性原理分析了分子的可能离解极限.并用多体项展式理论方法分别导出基态PdH2和YH2分子的势能函数,其等值势能面图准确地再现了PdH2和YH2分子的结构特征和离解能,由此讨论了Pd + H2和Y + H2分子反应的势能面静态特征. 相似文献
14.
应用原子分子反应静力学原理导出LaH分子的电子状态和可能的离解极限,考虑相对论紧致有效势RCEP(RelativisticCompactEffectivePotential)近似下,用QCISD方法计算了LaH分子基态X1∑+的平衡几何Re和离解能De为2.125A和2.623eV,并在计算出来的一系列单点势能基础上,用正规方程组拟合Murrell-Sorbie(M-S)势能函数,得到相应态的解析势能函数,由此计算对应的光谱参数,其Be、ae、ωe和ωexe的理论值,分别为:3.7333、0.0723、1461.73和21.383cm-1. 相似文献
15.
运用多种方法、多种基组对PF(X3∑-)的平衡结构进行优化计算.用QCISD/6-311G(df)方法得到的平衡结构为RPF=0.158 9 nm,与实验值RPF=0.158 97 nm进行比较,最为接近,得出QCISD/6-311G(df)基组为最优基组;然后对PF(X3∑-)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到相应电子态的势能函数解析式,由势能函数计算了与PF(X3∑-)态相对应的光谱常数,结果与实验数据较为一致.这些数据为反应动力学提供了理论依据. 相似文献
16.
在Pu的相对论有效原子实势近似和N原子6-311G*全电子基函数下,用密度泛函B3LYP方法计算得到PuN分子基态X6∑+的结构与势能函数、力常数与光谱数据.同时计算得到PuN(g)分子在298 K时的标准生成热力学函数△fH0、△S0和△fG0,分别为-487.239 kJ/mol、95.345 J/mol K和-515.6661 kJ/mol. 相似文献
17.
采用多参考组态相互作用方法和aug-cc-p V5Z基函数组计算了CN+分子11∑+,21∑+,13∑+和13Π电子态的势能曲线。利用MS势能函数拟合得到了相应的解析势能表达式。在此基础上求解CN+分子的核运动薛定谔方程,获得了全部振动和转动能级,并用Dunham系数展开式拟合出了光谱常数,与目前仅有的11∑+,21∑+态的文献报道结果进行了比较。结果可对航天尾气及工业过程光谱方法监控提供参考。 相似文献
18.
OUH体系的结构和分析势能函数 总被引:3,自引:0,他引:3
采用密度泛涵B3LYP方法优化出了OUH分子的各种结构,确定了最稳定构型和离解能,以及它们的谐性力常数,并导出双原子分子UH,UO的Murrell-Sorbie势能函数及其光谱数据。采用多体项展式方法,导出OUH(X^4A')基态分子的分析势能函数,获得OUH(X^4A')体系的势能面,考察了这个势能函数的基本性质,正确地复现出OUH分子的平衡结构特征,结果表明:U+OH,O+UH,H+UO的反应均为无阈能的放热能反应。为进一步探讨OUH体系的反应动力学过程打下了基础。 相似文献
19.
20.
PdYH分子的结构与势能函数 总被引:7,自引:1,他引:7
用密度泛函理论的B3LYP方法, 对钯和钇原子采用SDD收缩价基函数, 氢原子采用6-311++G**全电子基函数, 对PdY和PdYH体系的结构进行优化. 计算表明: PdY分子的几何构型为C∞v, 其基态为X2Σ+态, 键长R=0.24168 nm, 离解能为De=2.8261 eV, 谐振频率ωe=254.0656 cm-1, 并拟合得到Murrell-Sorbie势能函数; PdYH分子最稳态为Cs构型, 电子组态为1A', 平衡核间距RPdY=0.24281 nm, RYH=0.19824 nm, 键角∠PdYH=116.7157°, 离解能De=5.6146 eV, 基态简正振动频率: 对称伸缩振动频率ν1 (a')=348.2909 cm-1, 弯曲振动频率ν2 (a')=243.3382 cm-1, 反对称伸缩振动频率ν3 (a')=1442.2695 cm-1. 由微观过程的可逆性原理分析了分子的可能离解极限. 并用多体项展式理论方法分别导出基态PdY和PdYH分子的势能函数, 其等值势能面图准确地再现了PdY和PdYH分子的结构特征和离解能, 由此讨论了Pd+Y+H分子反应的势能面静态特征. 相似文献