首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Electron detachment dissociation of dermatan sulfate oligosaccharides   总被引:1,自引:1,他引:0  
The structural characterization of glycosaminoglycans (GAG) oligosaccharides has been a long-standing challenge in the field of mass spectrometry. In this work, we present the application of electron detachment dissociation (EDD) Fourier transform mass spectrometry to the analysis of dermatan sulfate (DS) oligosaccharides up to 10 residues long. The EDD mass spectra of DS oligosaccharides were compared with their infrared multiphoton dissociation (IRMPD) mass spectra. EDD produces more abundant fragmentation than IRMPD with far less loss of SO3 from labile sulfate modifications. EDD cleaves all glycosidic bonds, yielding both conventional glycosidic bond fragmentation as well as satellite peaks resulting from the additional loss of 1 or 2 hydrogen atoms. EDD also yields more cross-ring fragmentation than IRMPD. For EDD, abundant cross-ring fragmentation in the form of A- and X-ions is observed, with 1,5Xn cleavages occurring for all IdoA residues and many of the GalNAc4S residues, except at the reducing and nonreducing ends. In contrast, IRMPD produces only A-type cross-ring fragmentation for long oligosaccharides (dp6-dp10). As all the structurally informative fragment ions observed by IRMPD appear as a subset of the peaks found in the EDD mass spectrum, EDD shows great potential for the characterization of GAG oligosaccharides using a single tandem mass spectrometry experiment.  相似文献   

2.
Electron detachment dissociation (EDD) Fourier transform mass spectrometry has recently been shown to be a powerful tool for examining the structural features of sulfated glycosaminoglycans (GAGs). The characteristics of GAG fragmentation by EDD include abundant cross-ring fragmentation primarily on hexuronic acid residues, cleavage of all glycosidic bonds, and the formation of even- and odd-electron product ions. GAG dissociation by EDD has been proposed to occur through the formation of an excited species that can undergo direct decomposition or ejects an electron and then undergoes dissociation. In this work, we perform electron-induced dissociation (EID) on singly charged GAGs to identify products that form via direct decomposition by eliminating the pathway of electron detachment. EID of GAG tetrasaccharides produces cleavage of all glycosidic bonds and abundant cross-ring fragmentation primarily on hexuronic acid residues, producing fragmentation similar to EDD of the same molecules, but distinctly different from the products of infrared multiphoton dissociation or collisionally activated decomposition. These results suggest that observed abundant fragmentation of hexuronic acid residues occurs as a result of their increased lability when they undergo electronic excitation. EID fragmentation of GAG tetrasaccharides results in both even- and odd-electron products. EID of heparan sulfate tetrasaccharide epimers produces identical fragmentation, in contrast to EDD, in which the epimers can be distinguished by their fragment ions. These data suggest that for EDD, electron detachment plays a significant role in distinguishing glucuronic acid from iduronic acid.  相似文献   

3.
High-field asymmetric waveform ion mobility spectrometry (FAIMS) is shown to be capable of resolving isomeric and isobaric glycosaminoglycan negative ions and to have great utility for the analysis of this class of molecules when combined with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tandem mass spectrometry. Electron detachment dissociation (EDD) and other ion activation methods for tandem mass spectrometry can be used to determine the sites of labile sulfate modifications and for assigning the stereochemistry of hexuronic acid residues of glycosaminoglycans (GAGs). However, mixtures with overlapping mass-to-charge values present a challenge, as their precursor species cannot be resolved by a mass analyzer prior to ion activation. FAIMS is shown to resolve two types of mass-to-charge overlaps. A mixture of chondroitin sulfate A (CSA) oligomers with 4–10 saccharides units produces ions of a single mass-to-charge by electrospray ionization, as the charge state increases in direct proportion to the degree of polymerization for these sulfated carbohydrates. FAIMS is shown to resolve the overlapping charge. A more challenging type of mass-to-charge overlap occurs for mixtures of diastereomers. FAIMS is shown to separate two sets of epimeric GAG tetramers. For the epimer pairs, the complexity of the separation is reduced when the reducing end is alkylated, suggesting that anomers are also resolved by FAIMS. The resolved components were activated by EDD and the fragment ions were analyzed by FTICR-MS. The resulting tandem mass spectra were able to distinguish the two epimers from each other.
Figure
?  相似文献   

4.
The first application of electron detachment dissociation (EDD) to carbohydrates is presented. The structural characterization of glycosaminoglycan (GAG) oligosaccharides by mass spectrometry is a longstanding problem because of the lability of these acidic, polysulfated carbohydrates. Doubly-charged negative ions of four GAG tetrasaccharides are examined by EDD, collisionally activated dissociation (CAD), and infrared multiphoton dissociation (IRMPD). EDD is found to produce information-rich mass spectra with both cross ring and glycosidic cleavage product ions. In contrast, most of the product ions produced by CAD and IRMPD result from glycosidic cleavage. EDD shows great potential as a tool for locating the sites of sulfation and other modifications in glycosaminoglycan oligosaccharides.  相似文献   

5.
Electron detachment dissociation (EDD) has previously provided stereo-specific product ions that allow for the assignment of the acidic C-5stereochemistry in heparan sulfate glycosaminoglycans (GAGs), but application of the same methodology to an epimer pair in the chondroitin sulfate glycoform class does not provide the same result. A series of experiments have been conducted in which glycosaminoglycan precursor ions are independently activated by electron detachment dissociation (EDD), electron induced dissociation (EID), and negative electron transfer dissociation (NETD) to assign the stereochemistry in chondroitin sulfate (CS) epimers and investigate the mechanisms for product ion formation during EDD in CS glycoforms. This approach allows for the assignment of electronic excitation products formed by EID and detachment products to radical pathways in NETD, both of which occur simultaneously during EDD. The uronic acid stereochemistry in electron detachment spectra produces intensity differences when assigned glycosidic and cross-ring cleavages are compared. The variations in the intensities of the doubly deprotonated (0,2)X(3) and Y(3) ions have been shown to be indicative of CS-A/DS composition during the CID of binary mixtures. These ions can provide insight into the uronic acid composition of binary mixtures in EDD, but the relative abundances, although reproducible, are low compared with those in a CID spectrum acquired on an ion trap. The application of principal component analysis (PCA) presents a multivariate approach to determining the uronic acid stereochemistry spectra of these GAGs by taking advantage of the reproducible peak distributions produced by electron detachment.  相似文献   

6.
The structural characterization of glycosaminoglycan (GAG) carbohydrates by mass spectrometry has been a long-standing analytical challenge due to the inherent heterogeneity of these biomolecules, specifically polydispersity, variability in sulfation, and hexuronic acid stereochemistry. Recent advances in tandem mass spectrometry methods employing threshold and electron-based ion activation have resulted in the ability to determine the location of the labile sulfate modification as well as assign the stereochemistry of hexuronic acid residues. To facilitate the analysis of complex electron detachment dissociation (EDD) spectra, principal component analysis (PCA) is employed to differentiate the hexuronic acid stereochemistry of four synthetic GAG epimers whose EDD spectra are nearly identical upon visual inspection. For comparison, PCA is also applied to infrared multiphoton dissociation spectra (IRMPD) of the examined epimers. To assess the applicability of multivariate methods in GAG mixture analysis, PCA is utilized to identify the relative content of two epimers in a binary mixture.  相似文献   

7.
Heparin glycosaminoglycans (GAGs) present the most difficult glycoform for analytical characterization due to high levels of sulfation and structural heterogeneity. Recent contamination of the clinical heparin supply and subsequent fatalities has highlighted the need for sensitive methodologies of analysis. In the last decade, tandem mass spectrometry has been increasingly applied for the analysis of GAGs, but developments in the characterization of highly sulfated compounds have been minimal due to the low number of cross-ring cleavages generated by threshold ion activation by collisional induced dissociation (CID). In the current work, electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) are applied to a series of heparin tetrasaccharides. With both activation methods, abundant glycosidic and cross-ring cleavages are observed. The concept of Ionized Sulfate Criteria (ISC) is presented as a succinct method for describing the charge state, degree of ionization and sodium/proton exchange in the precursor ion. These factors contribute to the propensity for useful fragmentation during MS/MS measurements. Precursors with ISC values of 0 are studied here, and shown to yield adequate structural information from ion activation by EDD or IRMPD.  相似文献   

8.
Electron transfer through gas phase ion-ion reactions has led to the widespread application of electron- based techniques once only capable in ion trapping mass spectrometers. Although any mass analyzer can in theory be coupled to an ion-ion reaction device (typically a 3-D ion trap), some systems of interest exceed the capabilities of most mass spectrometers. This case is particularly true in the structural characterization of glycosaminoglycan (GAG) oligosaccharides. To adequately characterize highly sulfated GAGs or oligosaccharides above the tetrasaccharide level, a high resolution mass analyzer is required. To extend previous efforts on an ion trap mass spectrometer, negative electron transfer dissociation coupled with a Fourier transform ion cyclotron resonance mass spectrometer has been applied to increasingly sulfated heparan sulfate and heparin tetrasaccharides as well as a dermatan sulfate octasaccharide. Results similar to those obtained by electron detachment dissociation are observed.  相似文献   

9.
We compare product-ion mass spectra produced by electron detachment dissociation (EDD) and electron photodetachment dissociation (EPD) of multi-deprotonated peptides on a Fourier transform and a linear ion trap mass spectrometer, respectively. Both methods, EDD and EPD, involve the electron emission-induced formation of a radical oxidized species from a multi-deprotonated precursor peptide. Product-ion mass spectra display mainly fragment ions resulting from backbone cleavages of Cα-C bond ruptures yielding a and x ions. Fragment ions originating from N-Cα backbone bond cleavages are also observed, in particular by EPD. Although EDD and EPD methods involve the generation of a charge-reduced radical anion intermediate by electron emission, the product ion abundance distributions are drastically different. Both processes seem to be triggered by the location and the recombination of radicals (both neutral and cation radicals). Therefore, EPD product ions are predominantly formed near tryptophan and histidine residues, whereas in EDD the negative charge solvation sites on the backbone seem to be the most favorable for the nearby bond dissociation.  相似文献   

10.
The structural characterization of sulfated glycosaminoglycan (GAG) carbohydrates remains an important target for analytical chemists attributable to challenges introduced by the natural complexity of these mixtures and the defined need for molecular-level details to elucidate biological structure–function relationships. Tandem mass spectrometry has proven to be the most powerful technique for this purpose. Previously, electron detachment dissociation (EDD), in comparison to other methods of ion activation, has been shown to provide the largest number of useful cleavages for de novo sequencing of GAG oligosaccharides, but such experiments are restricted to Fourier transform ion cyclotron resonance mass spectrometers (FTICR-MS). Negative electron transfer dissociation (NETD) provides similar fragmentation results, and can be achieved on any mass spectrometry platform that is designed to accommodate ion–ion reactions. Here, we examine for the first time the effectiveness of NETD-Orbitrap mass spectrometry for the structural analysis of GAG oligosaccharides. Compounds ranging in size from tetrasaccharides to decasaccharides were dissociated by NETD, producing both glycosidic and cross-ring cleavages that enabled the location of sulfate modifications. The highly-sulfated, heparin-like synthetic GAG, ArixtraTM, was also successfully sequenced by NETD. In comparison to other efforts to sequence GAG chains without fully ionized sulfate constituents, the occurrence of sulfate loss peaks is minimized by judicious precursor ion selection. The results compare quite favorably to prior results with electron detachment dissociation (EDD). Significantly, the duty cycle of the NETD experiment is sufficiently short to make it an effective tool for on-line separations, presenting a straightforward path for selective, high-throughput analysis of GAG mixtures.
Graphical Abstract ?
  相似文献   

11.
Electron detachment dissociation (EDD) is an emerging mass spectrometry (MS) technique for the primary structure analysis of peptides, carbohydrates, and oligonucleotides. Herein, we explore the potential of EDD for sequencing of proteins of up to 147 amino acid residues by using top-down MS. Sequence coverage ranged from 72% for Melittin, which lacks carboxylic acid functionalities, to 19% for an acidic 147-residue protein, to 12% for Ferredoxin, which showed unusual backbone fragmentation next to cysteine residues. A limiting factor for protein sequencing by EDD is the facile loss of small molecules from amino acid side chains, in particular CO(2). Based on the types of fragments observed and fragmentation patterns found, we propose detailed mechanisms for protein backbone cleavage and side chain dissociation in EDD. The insights from this study should further the development of EDD for top-down MS of acidic proteins.  相似文献   

12.
Fragmentation of peptide polyanions by electron detachment dissociation (EDD) has been induced by electron irradiation of deprotonated polypeptides [M-nH](n-) with >10 eV electrons. EDD has been found to lead preferentially to a* and x fragment ions (C(alpha)-C backbone cleavage) arising from the dissociation of oxidized radical anions [M-nH]((n-1)-*. We demonstrate that C(alpha)-C cleavages, which are otherwise rarely observed in tandem mass spectrometry, can account for most of the backbone fragmentation, with even-electron x fragments dominating over radical a* ions. Ab initio calculations at the B3 LYP level of theory with the 6-311+G(2 p,2 d)//6-31+G(d,p) basis set suggested a unidirectional mechanism for EDD (cleavage always N-terminal to the radical site), with a*, x formation being favored over a, x* fragmentation by 74.2 kJ mol(-1). Thus, backbone C(alpha)-C bonds N-terminal to proline residues should be immune to EDD, in agreement with the observations. EDD may find application in mass spectrometry for such tasks as peptide sequencing and localization of labile post-translational modifications, for example, those introduced by sulfation and phosphorylation. EDD can now be performed not only in Fourier transform mass spectrometry, but also in far more widely used quadrupole (Paul) ion traps.  相似文献   

13.
Zhou W  Håkansson K 《Electrophoresis》2011,32(24):3526-3535
We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared with infrared multiphoton dissociation. Neutral losses and satellite ions such as C-2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA-labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared with 2-AA-labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag.  相似文献   

14.
Structural characterization of glycosphingolipids as their lithiated adducts using low-energy collisional-activated dissociation (CAD) tandem mass spectrometry with electrospray ionization (ESI) is described. The tandem mass spectra contain abundant fragment ions reflecting the long chain base (LCB), fatty acid, and the sugar constituent of the molecule and permit unequivocal identification of cerebrosides, di-, trihexosyl ceramides and globosides. The major fragmentation pathways arise from loss of the sugar moiety to yield a lithiated ceramide ion, which undergoes further fragmentation to form multiple fragment ions that confirm the structures of the fatty acid and LCB. The mechanisms for the ion formation and the possible configuration of the fragment ions, resulting from CAD of the lithiated molecular ions ([M + Li]+) of monoglycosylceramides are proposed. The mechanisms were supported by CAD and source CAD tandem mass spectra of various cerebrosides and of their analogous molecules prepared by H-D exchange. Constant neutral loss and precursor ion scannings to identify galactosylceramides with sphingosine or sphinganine LCB subclasses, and with specific N-2-hydroxyl fatty acid subclass in mixtures are also demonstrated.  相似文献   

15.
The influence of the glycosylation site on the fragmentation behavior of 18 flavonoid glycoside standards was studied using positive and negative electrospray ionization mass spectrometry in combination with collision-induced dissociation and tandem mass spectrometry. The glycosylation position is shown to affect the relative abundance of the radical aglycone ions that can be observed in the [M-H]- collision-induced dissociation spectra. In particular, the radical aglycone ions are very abundant for deprotonated flavonol 3-O-glycosides. Collisional activation of the radical aglycone ions produced from positional isomers revealed minor differences: m,nB0- product ions are pronounced for 7-O-glycosides, whereas m,nA0- product ions are relatively more abundant for 4'-O-glycosides. In addition, the ratio between the radical aglycone and the regular aglycone ions in the [M+Na]+ high-energy collision-induced dissociation spectra gives an indication about the glycosylation site. This ion ratio allows the differentiation between flavonoid 3-O- and 7-O-glycosides or can be useful in the comparison of unknown compounds with standards. Unambiguous differentiation between O-glycosylation at the common positions of flavonoid O-glycosides, i.e. the 3-, 4'- and 7-positions, is achieved by collisional activation of sodiated molecules at high collision energy. The presence of a B-ring product ion containing the sugar residue indicates 4'-O-glycosylation, whereas the loss of the B-ring part from the aglycone product ion is characteristic of 3-O-glycosylation and the loss of the B-ring part from both the [M+Na]+ precursor ion and the aglycone product ion points to 7-O-glycosylation.  相似文献   

16.
Chloride anion attachment has previously been shown to aid determination of saccharide anomeric configuration and generation of linkage information in negative ion post-source decay MALDI tandem mass spectrometry. Here, we employ electron detachment dissociation (EDD) and collision activated dissociation (CAD) for the structural characterization of underivatized oligosaccharides bearing a chloride ion adduct. Both neutral and sialylated oligosaccharides are examined, including maltoheptaose, an asialo biantennary glycan (NA2), disialylacto-N-tetraose (DSLNT), and two LS tetrasaccharides (LSTa and LSTb). Gas-phase chloride-adducted species are generated by negative ion mode electrospray ionization. EDD and CAD spectra of chloride-adducted oligosaccharides are compared to the corresponding spectra for doubly deprotonated species not containing a chloride anion to assess the role of chloride adduction in the stimulation of alternative fragmentation pathways and altered charge locations allowing detection of additional product ions. In all cases, EDD of singly chloridated and singly deprotonated species resulted in an increase in observed cross-ring cleavages, which are essential to providing saccharide linkage information. Glycosidic cleavages also increased in EDD of chloride-adducted oligosaccharides to reveal complementary structural information compared to traditional (non-chloride-assisted) EDD and CAD. Results indicate that chloride adduction is of interest in alternative anion activation methods such as EDD for oligosaccharide structural characterization.  相似文献   

17.
A series of synthetic mono- and diphosphorylated peptides has been analyzed by positive and negative mode electrospray ionization-tandem mass spectrometry. The synthetic peptides are serine- and threonine-phosphorylated analogs of proteolytic fragments from the C-terminal region of rhodopsin. Use of positive and negative modes of electrospray ionization to produce ions for tandem mass spectrometry via low energy collision-induced dissociation was explored. For some of the peptides, the complementary use of experimental results allowed determination of the phosphorylation sites when either mode alone gave incomplete information. Other peptides, however, gave negative ion spectra not interpretable in terms of backbone cleavages. However, use of positive ion tandem mass spectrometry of different charge state precursor ions gave sufficient information in most cases to assign sites of phosphorylation. These results illustrate the utility of obtaining complementary information by tandem mass spectrometry by using precursor ions of different charge polarity or number.  相似文献   

18.
The development of strategies based on mass spectrometry to help for deep structural analysis of acidic oligosaccharides remains topical. We thus examined the dissociation behavior of deprotonated ions of heparin-derived di- to tetra-saccharides under UV irradiation at 220 nm. Depending on the ionization state of the carboxylic groups, an oxidized species issued from electron photodetachment was observed in complement to photoinduced fragmentation of precursor ions. The influence of the charge location in the oligosaccharide dianions on the balance between photodissociation and electron photodetachment is examined and a way to direct the relaxation pathways, (i.e., dissociation versus electron detachment), is proposed using sodium adducts. The oxidized species was subjected to activated-electron photodetachment (activated-EPD) leading to complementary informative fragment ions to those issued from photodissociation. Directed photoinduced dissociation at 220 nm and activated-EPD should complement the more conventional CAD and IRMPD activation modes for deeper structural analysis of acidic oligosaccharides-derived anions.  相似文献   

19.
Electron detachment dissociation (EDD) has recently been shown by Amster and coworkers to constitute a valuable analytical approach for structural characterization of glycosaminoglycans. Here, we extend the application of EDD to neutral and sialylated oligosaccharides. Both branched and linear structures are examined, to determine whether branching has an effect on EDD fragmentation behavior. EDD spectra are compared to collisional activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) spectra of the doubly and singly deprotonated species. Our results demonstrate that EDD of both neutral and sialylated oligosaccharides provides structural information that is complementary to that obtained from both CAD and IRMPD. In all cases, EDD resulted in additional cross-ring cleavages. In most cases, cross-ring fragmentation obtained by EDD is more extensive than that obtained from IRMPD or CAD. Our results also indicate that branching does not affect EDD fragmentation, contrary to what has been observed for electron capture dissociation (ECD).  相似文献   

20.
Electron-capture dissociation (ECD) Fourier transform mass spectrometry (FTMS) employed to generate comprehensive sequence information for the chromatographic analysis of enzymatic protein digests is described. A pepsin digest of cytochrome c was separated by reversed-phase micro-high-performance liquid chromatography (microHPLC) and ionized 'on-line' by electrospray ionization (ESI). The ions thus formed were transferred to and trapped in the FTMS analyzer cell. Typically, no precursor ion isolation was performed. The trapped ions were subjected to a pulse of electrons to induce fragmentation. Mass spectra were acquired continuously to produce a three-dimensional LC/MS data set. The spectra were dominated by c and, to a lesser degree, z ions, which provided near complete sequence coverage. External calibration provided good mass accuracy and resolution, typical of FTMS. Thus microHPLC/ECD - FTMS is shown to be a highly informative method for the analysis of enzymatic protein digests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号