首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
自旋扩散在固体核磁共振的许多现象中都起着非常重要的作用。现有几种理论方案以估算扩散系数。然而在实践中这种估算既不实际也不可靠。本文提出了确定自旋扩散速率的新方案,它利用的是CP MAS NMR中的稀核退极化规律。带质子的稀核磁化矢量在退极化中表现出两个阶段,慢衰减的第二阶段是单一指数过程,它提供了自旋扩散速率的直接度量。自旋扩散实质上是极化转移的一种宏观表现形式,这种转移通过一系列成对自旋的flip-flop进行,可以用一维随机走步模型描述。从退磁过程半对数曲线的斜率可以求得平均flip-flop时间。自旋扩散系数可以由此估算。在一些典型的刚性有机固体和结晶高分子聚合物中,求得平均flip-flop的时间是700微秒左右。它比偶极相关时间大一个数量级。这意味着,自旋扩散时间常数与自旋—自旋弛豫时间常数是很不相同的,虽然这两个相应过程虽密切相关的。由质子线宽估计自旋扩散系数是不可靠的。  相似文献   

2.
Echo-detected electron paramagnetic resonance (echoEPR) profiles for irradiated deuterated ammonium tartrate single crystals depend strongly on the delays between pulses of the echo sequence. This is mainly due to instantaneous and spectral diffusion that plays a crucial role in determining the decay of the echo at every field position: the dephasing rate 1/7M depends on the number of spins excited by the pulses and on the total number of interacting spins. A rigorous simulation of the echoEPR profiles at different delays requires the evaluation of the modulation pattern (ESEEM) and of the dephasing processes at every field position. From the simulations, information on the microscopic radical concentration, and on the electron-electron flip-flop rates of the single radical species can be obtained. Natural isotope13C substitution generates low-concentration radicals with relaxation properties different from the equivalent12C-substitued radicals. The different behavior is discussed.  相似文献   

3.
We measure the dynamics of nuclear spins in a single-electron charged self-assembled InGaAs quantum dot with negligible nuclear spin diffusion due to dipole-dipole interaction and identify two distinct mechanisms responsible for the decay of the Overhauser field. We attribute a temperature-independent decay lasting ~100 sec at 5 T to intradot diffusion induced by hyperfine-mediated indirect nuclear spin interaction. By repeated polarization of the nuclear spins, this diffusion induced partial decay can be suppressed. We also observe a gate voltage and temperature-dependent decay stemming from cotunneling mediated nuclear spin flips that can be prolonged to ~30 h by adjusting the gate voltage and lowering the temperature to ~200 mK. Our measurements indicate possibilities for exploring quantum dynamics of the central spin model.  相似文献   

4.
Several single crystals and powder samples of ammonium tartrate, recently proposed as a possible ESR dosimeter, have been X-irradiated with different doses. The total radical concentration has been determined by quantitative cw ESR, by comparison with a standard. The samples have been studied by electron spin echo spectroscopy. The two-pulse echo decay has been obtained and simulated by a single exponential function for different values of the microwave power of the pulses and for different pulse lengths. The dependence of the phase memory time TM on the microwave power has been exploited to get information on the contribution of the instantaneous diffusion to spin dephasing. At room temperature in the range of radical concentrations of 10(18)-10(19) spins/cm3 the instantaneous diffusion is the dominant spin dephasing mechanism. The linear dependence of the instantaneous diffusion on the total concentration of the radicals is in agreement with the theory. From the latter result we conclude that the average radical-radical distance corresponds to a random distribution of the radicals in the matrix. A simple method of measuring the radical concentration by the ESE decays in powder samples of irradiated ammonium tartrate is described.  相似文献   

5.
We have used the large gradients generated near the ferromagnetic tip of a magnetic resonance force microscope to locally suppress spin diffusion in a silica sample containing paramagnetic electron spins. By controlling the slice location with respect to the tip, the magnetic field gradient was varied from 0.01 to 36 mT/microm, resulting in a fourfold decrease in T-11 and a similar decrease in T(-1)(1 rho). The observed dependence of the relaxation rates on field gradient is consistent with the quenching of flip-flop interactions that mediate the transport of magnetization between slow and fast relaxing spins.  相似文献   

6.
We describe how the spin coherence time of a localized electron spin in solids, i.e., a solid state spin qubit, can be prolonged by applying designed electron spin resonance pulse sequences. In particular, the spin echo decay due to the spectral diffusion of the electron spin resonance frequency induced by the non-Markovian temporal fluctuations of the nuclear spin flip-flop dynamics can be strongly suppressed using multiple-pulse sequences akin to the Carr-Purcell-Meiboom-Gill pulse sequence in nuclear magnetic resonance. Spin coherence time can be enhanced by factors of 4-10 in GaAs quantum-dot and Si:P quantum computer architectures using composite sequences with an even number of pulses.  相似文献   

7.
The spin flip-flop transition rate is calculated for the case of spectral spin diffusion within a system of dipolarly coupled spins in a solid where the lattice vibrations are present. Long-wavelength acoustic phonons time-modulate the interspin distance rij and enhance the transition rate via the change of the 1/r3ij term in the coupling dipolar Hamiltonian. The phonon-assisted spin diffusion rate is calculated by the golden rule in the Debye approximation of the phonon density of states. The coupling of the spins to the phonons introduces temperature dependence into the transition rate, in contrast to the spin diffusion in a rigid lattice, where the rate is temperature-independent. The direct (one-phonon absorption or emission) processes introduce a linear temperature dependence into the rate at temperatures not too close to T = 0. Two-phonon processes introduce a more complicated temperature dependence that again becomes simple analytical for temperatures higher than the Debye temperature, where the rate is proportional to T2, and in the limit T → 0, where the rate varies as T7. Raman processes (one-phonon absorption and another phonon emission) dominate by far the phonon-assisted spin flip-flop transitions.  相似文献   

8.
Analysis of the decay behavior of two-pulse and three-pulse electron spin-echo patterns gives information on the physical properties of the spin system such as the spin concentration and the spin reorientation rates. A computer-simulation approach is developed to study the effects of the spin concentration and of the spin-flip rate on the decay. The analysis is extended to two limiting models that describe different dynamic processes affecting the spectral diffusion of the spin system. The instantaneous diffusion mechanism is also taken into account. On the basis of the combined analysis of two-pulse and three-pulse simulated decay patterns the possibility of distinguishing the different dynamic models is investigated as well as the degree of accuracy in the determination of the physical quantities. A general finding is that the possibility of distinguishing the different dynamic models and the degree of accuracy depend both on the ratio between the interpulse times and the spin-flip time and on the relative weights of the spectral diffusion and instantaneous diffusion mechanisms.  相似文献   

9.
We report a measurement of the spin-echo decay of a single electron spin confined in a semiconductor quantum dot. When we tip the spin in the transverse plane via a magnetic field burst, it dephases in 37 ns due to the Larmor precession around a random effective field from the nuclear spins in the host material. We reverse this dephasing to a large extent via a spin-echo pulse, and find a spin-echo decay time of about 0.5 micros at 70 mT. These results are in the range of theoretical predictions of the electron spin coherence time governed by the electron-nuclear dynamics.  相似文献   

10.
李爱仙  段素青  张伟 《中国物理 B》2016,25(10):108506-108506
Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot(QD) by the coherent population trapping(CPT) and the electric dipole spin resonance(EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip–flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time.  相似文献   

11.
We show that the spin dynamics of any pulse sequence with off-resonant pulses is identical to that of a modified sequence with on-resonant pulses, including relaxation and diffusion effects. This equivalence applies to pulse sequences with arbitrary offset frequency deltaomega(0) which may exceed the RF field strength omega(1). Using this approach, we examine steady-state free precession (SSFP) in grossly inhomogeneous fields. We show explicitly that the magnitude of the magnetization for each mode at an offset frequency deltaomega(0) is equal to that for SSFP with on-resonance pulses of rescaled amplitude, with the same dependence on relaxation times and diffusion coefficient. The rescaling depends on offset frequency and RF field strength. The theoretical results have been tested experimentally and excellent agreement is found.  相似文献   

12.
We present a general method for constructing a subset of the constants of motion in terms of products of spin operators. These operators are then used to give insight into the multi-spin orders comprising the quasi-equilibrium state formed under a Jeener-Broekaert sequence in small, dipolar-coupled, spin systems. We further show that constants of motion that represent single-quantum coherences are present due to the symmetry of the dipolar Hamiltonian under 180 degrees spin rotations, and that such coherences contribute a DC component to the FID which vanishes in the absence of the flip-flop terms and is only present for spin clusters with an odd number of spins.  相似文献   

13.
The one-dimensional spin facilitated kinetic Ising model is studied analytically using the master equation and by simulations. The local state of the spins (corresponding to mobile and immobile cells) can change depending on the state of the neighbored spins, which reflects the high cooperativity inherent in glassy materials. The short-time behavior is analyzed using a Fock space representation for the master equation. The hierarchy of evolution equations for the averaged spin state and the time dependence of the spin autocorrelation function are calculated with different methods (mean-field theory, expansion in powers of the time, partial summation) and compared with numerical simulations. The long-time behavior can be obtained by mapping the one-dimensional spin facilitated kinetic Ising model onto a one-dimensional diffusion model containing birth and death processes. The resulting master equation is solved by van Kampen's size expansion, which leads to a Langevin equation with Gaussian noise. The predicted autocorrelation function and the global memory offer in the long-time limit a screened algebraic decay and a stretched exponential decay, respectively, consistent with numerical simulations.  相似文献   

14.
The diffusion behaviors of spins in the presence of distant dipolar field in two-component spin systems during the second evolution period of a modified CRAZED sequence before acquisition were investigated. Theoretical formulas were deduced based on the distant dipolar field model. The simulation results and experimental observations are consistent with the theoretical predictions. This study shows that the relative intensities of signals from intermolecular zero-quantum coherences (iZQCs) and intermolecular double-quantum coherences (iDQCs) have the same diffusion attenuation characteristic under the combined effect of diffusion weighting gradients and distant dipolar field during the second evolution period. This diffusion attenuation may be different from that of conventional single-quantum coherence signal, depending on the relative orientation of the diffusion weighting gradients to the coherence selection gradients. The results presented herein are helpful for understanding the effect of distant dipolar field from a spin system on the diffusion behavior of other spin system and the signal properties in the iZQC or iDQC magnetic resonance imaging.  相似文献   

15.
Simultaneous quantum correlations between two spins in magnetic nanostructures are considered in the model of a linear chain of a finite number of atoms with exchange interaction between electron spins of neighboring atoms in the framework of the Heisenberg ferromagnetism theory. We assume that in the initial state, the spins of all chain atoms except the first two are oriented along the same direction. The spins of the first two atoms are flipped. Due to the exchange interaction, this initial state generates a spin flip wave along the chain. The expressions obtained for nonstationary quantum amplitudes of the flip probability waves for an even number of spins can be used for calculating quantum correlations between two spins separated by a large distance in a chain. Numerical calculations of the spin correlator reveal that the correlation between two spins in the chain occurs with a delay on the order of the time of propagation of the exchange interaction along the spin chain. After the delay, the spin correlation amplitude abruptly increases followed by subsequent oscillatory temporal behavior.  相似文献   

16.
The effect of dipole–dipole cross correlations on the net nuclear Overhauser effect (NOE) has been analyzed here for realistic systems by extending the three-spin calculations to four and five spins in order to account for additional cross correlations and spin diffusion. These have been compared with the addition of leakage terms to the three-spin system. The additional spins enhance cross-correlation effects on one hand but on the other act as supplementary relaxation pathways for the magnetization to diffuse. This analysis shows that for a linear array of spins in the long-correlation limit, dipole–dipole cross correlations increase net NOE, while spin diffusion decreases it, and that the cumulative effect is a reduced effect of cross correlations. In other geometries and correlation limits, the effect of cross correlations on net NOE is generally small.  相似文献   

17.
A study was made of the effect of an rf field on spin diffusion. The interaction of spins with the rf field is described quantum mechanically. It is shown that the effect of the rf field on the system of spins can, in some approximation, be interpreted as the effect of a change in the Larmor frequency of the spin and a decrease in the magnitude of the dipole-dipole interaction between spins. These conclusions were obtained on the basis of a unitary transformation which eliminates the explicit form of the spin-photon interaction operator in the Hamiltonian of the system considered. An expression is derived for the spin-diffusion coefficient under saturation. The presence of the rf field results in a decrease in the diffusion coefficient.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 7–11, September, 1979.  相似文献   

18.
Silicon is promising for spin-based quantum computation because nuclear spins, a source of magnetic noise, may be eliminated through isotopic enrichment. Long spin decoherence times T2 have been measured in isotope-enriched silicon but come far short of the T2=2T1 limit. The effect of nuclear spins on T2 is well established. However, the effect of background electron spins from ever present residual phosphorus impurities in silicon can also produce significant decoherence. We study spin decoherence decay as a function of donor concentration, 29Si concentration, and temperature using cluster expansion techniques specifically adapted to the problem of a sparse dipolarly coupled electron spin bath. Our results agree with the existing experimental spin echo data in Si:P and establish the importance of background dopants as the ultimate decoherence mechanism in isotope-enriched silicon.  相似文献   

19.
We introduce a completely different method to calculate the evolution of a spin interacting with a sufficient large spin bath,especially suitable for treating the central spin model in a quantum dot(QD).With only an approximation on the envelope of central spin,the symmetry can be exploited to reduce a huge Hilbert space which cannot be calculated with computers to many small ones which can be solved exactly.This method can be used to calculate spin-bath evolution for a spin bath containing many(say,1000)spins,without a perturbative limit such as strong magnetic field condition,and works for long-time regime with sufficient accuracy.As the spin-bath evolution can be calculated for a wide range of time and magnetic field,an optimal dynamic of spin flip-flop can be found,and more sophisticated approaches to achieve extremely high polarization of nuclear spins in a QD could be developed.  相似文献   

20.
Spin-lattice relaxation mechanisms in kaolinite have been reinvestigated by magic-angle spinning (MAS) of the sample. MAS is useful to distinguish between relaxation mechanisms: the direct relaxation rate caused by the dipole-dipole interaction with electron spins is not affected by spinning while the spin diffusion-assisted relaxation rate is. Spin diffusion plays a dominant role in 1H relaxation. MAS causes only a slight change in the relaxation behavior, because the dipolar coupling between 1H spins is strong. 29Si relaxes directly through the dipole-dipole interaction with electron spins under spinning conditions higher than 2 kHz. A spin diffusion effect has been clearly observed in the 29Si relaxation of relatively pure samples under static and slow-spinning conditions. 27Al relaxes through three mechanisms: phonon-coupled quadrupole interaction, spin diffusion and dipole-dipole interaction with electron spins. The first mechanism is dominant, while the last is negligibly small. Spin diffusion between 27Al spins is suppressed completely at a spinning rate of 2.5 kHz. We have analyzed the relaxation behavior theoretically and discussed quantitatively. Concentrations of paramagnetic impurities, electron spin-lattice relaxation times and spin diffusion rates have been estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号