共查询到20条相似文献,搜索用时 31 毫秒
1.
采用单针式电极,使用单极性重复频率脉冲电源,在常压氦气、氩气、氮气和空气中得到等离子体射流,并改变电压、流量和气体种类,分别观察不同的实验条件对等离子体射流的影响。实验结果表明:射流长度随施加电压的增加而增长;随着流量的连续变化,射流长度先逐渐变长,达到峰值后由于湍流影响,长度又逐渐缩短,达到一定流量后趋于饱和。此外,不同工作气体中的等离子体射流呈现截然不同的外观,氦气和氩气中射流呈针状模式,长度可达7 cm以上;而在氮气和空气中,射流呈现为长度不超过2 cm的刷状模式。 相似文献
2.
采用单针式电极,使用单极性重复频率脉冲电源,在常压氦气、氩气、氮气和空气中得到等离子体射流,并改变电压、流量和气体种类,分别观察不同的实验条件对等离子体射流的影响。实验结果表明:射流长度随施加电压的增加而增长;随着流量的连续变化,射流长度先逐渐变长,达到峰值后由于湍流影响,长度又逐渐缩短,达到一定流量后趋于饱和。此外,不同工作气体中的等离子体射流呈现截然不同的外观,氦气和氩气中射流呈针状模式,长度可达7 cm以上;而在氮气和空气中,射流呈现为长度不超过2 cm的刷状模式。 相似文献
3.
为了深入研究等离子射流阵列的放电特性,利用上升沿1 s、脉宽2 s的微秒脉冲电源产生等离子体射流,通过电压电流波形的测量和发光图像的拍摄,研究了在针-环双电极结构下,不同电极位置以及不同重复脉冲频率下氦气等离子体射流阵列的放电特性。实验结果表明放电最初产生在阵列的两端,随着外加电压幅值的增加,中心管也会有射流产生,最终形成射流阵列。随地电极距管口距离的变远,放电电流和中心管的射流长度均呈现出先增大后减小的变化趋势(20 mm处取得最大值),随着重复脉冲频率的增大,放电由不均匀的丝状放电向均匀放电转变,放电电流先减小而后保持不变。 相似文献
4.
为了深入研究等离子射流阵列的放电特性,利用上升沿1μs、脉宽2μs的微秒脉冲电源产生等离子体射流,通过电压电流波形的测量和发光图像的拍摄,研究了在针-环双电极结构下,不同电极位置以及不同重复脉冲频率下氦气等离子体射流阵列的放电特性。实验结果表明放电最初产生在阵列的两端,随着外加电压幅值的增加,中心管也会有射流产生,最终形成射流阵列。随地电极距管口距离的变远,放电电流和中心管的射流长度均呈现出先增大后减小的变化趋势(20mm处取得最大值),随着重复脉冲频率的增大,放电由不均匀的丝状放电向均匀放电转变,放电电流先减小而后保持不变。 相似文献
5.
在大气压等离子体射流应用中,环境气体对射流流出物的影响不可忽视,尤其是在某些对环境粒子高度敏感的特定场景中.同轴双管式射流装置可用于抑制射流流出物与环境气体之间的相互扩散,从而控制射流流出物的化学性质.本文对同轴双管式氦气大气压等离子体射流在不同屏蔽气体流速下的放电特性和化学性质进行了数值仿真研究,并通过实验光学图像对仿真模型加以验证.结果表明,相比于没有屏蔽气体的情况,在高流速条件下放电得到增强,而在低流速下放电较弱;随着流速的增加,空间中的粒子数均随之增加,这可以归因于由屏蔽气体流速增加而产生的更宽的主放电通道.此外,不同浓度轮廓线上的离子径向通量受到流速的影响也存在很大差异.本研究进一步揭示了不同的放电位置对氮氧粒子产生的影响,加深了关于屏蔽气体流速影响等离子体射流放电行为的认识,并可能为等离子体射流的进一步应用开辟新的机会. 相似文献
6.
通过实验和数值模拟研究了大气压脉冲放电等离子体射流,其中在脉冲电压上升沿阶段的放电中形成等离子体子弹并向接地电极输运,其传播速度在104 m·s–1量级.数值模拟研究还发现等离子体子弹邻近区域内增强的电场强度可达到106 V·m–1,说明等离子体子弹的形成主要由放电空间局域增强的电场导致,在接地电极附近会得到进一步增强.放电空间的电子密度时空演变过程揭示了等离子体子弹经过的区域会保持较高的电子密度,说明等离子体子弹的拖尾现象;而等离子体子弹头部增强的电子产生率与局域增强的电场强度对应,这说明了等离子体子弹产生的动力学过程.该大气压脉冲放电等离子体射流中等离子体子弹的特性和机理研究为发展大气压等离子体射流提供了理论和技术基础. 相似文献
7.
为了研究水蒸气体积分数对大气压等离子体射流放电机理及放电效率的影响,进而产生高活性低温等离子体并优化其效率。通过对大气压氩水等离子体射流的电压电流波形和Lissajous图形等电气特性的测量及发射光谱和发光图像等光学特性诊断,研究了不同水蒸气体积分数时,等离子体射流的放电特性。通过计算放电功率、传输电荷量、电子激发温度、分子振动温度和分子转动温度等主要放电参量,研究了它们随水蒸气体积分数的变化趋势,并结合放电机理对所得实验结果进行分析。结果表明,Ar/H2O等离子体射流除了产生N2和Ar,还有OH和O,气体温度在525~720 K之间变化,为典型的低温等离子体;随着水蒸气体积分数的增加,等离子体羽喷出管口的长度减小,放电功率减小,发光强度减弱,转动温度和振动温度增加;相同功率下,水蒸气体积分数为0.5%时,产生的OH达到最大。 相似文献
8.
基于同轴传输线结构设计了两种不同喷嘴结构的大气压微波等离子体射流(MW-APPJ)装置,其工作频率2.45 GHz,工作气体为氩气,分别研究了两种不同喷嘴结构对等离子体放电特性产生的影响。仿真结果表明,MW-APPJ在气体喷嘴处会产生高强度的电场,经过优化结构,实现在频率2.45 GHz下,喷嘴处的场强满足氩气电离的击穿场强阈值要求。同时,利用多物理场耦合仿真软件对装置的气流分布进行了稳态模拟,并通过实验对比分析了两种喷嘴结构下大气压氩等离子体射流的基本特性。实验结果表明,不同的喷嘴结构会影响等离子体装置的反射系数随输入功率的变化规律,但并不影响等离子体射流长度随输入功率的变化规律和反射功率随进气流量的变化规律;同时,在大气压下,稳态微波等离子体射流呈现出类金属性,等离子体中的电子只能在很薄的区域中吸收微波能量,因而造成微波的反射功率较大。 相似文献
9.
10.
以临近空间高超声速飞行器以及航天器再入大气环境飞行过程"黑障"问题的研究为背景,进行了多相交流电弧放电实验装置的物理设计,建立了六相交流电弧等离子体实验平台(MPX-2015),在背景压力为500 Pa的亚大气压条件下获得了最大直径和长度分别达到14.0 cm和60.0 cm的等离子体射流.研究了工作气体流量、真空腔压强、电极间距以及弧电流等因素对等离子体自由射流和冲击射流特性的影响规律.结果表明:在实验参数范围内,真空腔压强对等离子体的射流特性影响最为显著,等离子体自由射流的长度和直径以及冲击钝体条件下的鞘套有效工作长度和厚度均随着压强的降低而增大;提高沿电极环缝注入的工作气体流量或弧电流亦有利于等离子体鞘套尺寸的增加.上述工作有助于进一步开展临近空间飞行器与其周围复杂介质环境间复杂的气动热效应和"黑障"问题的研究. 相似文献
11.
12.
大气压介质阻挡放电(DBD)等离子体射流获得了广泛的应用.但是到目前为止,人们对其形成机理仍不甚清楚.为此,本文对其进行了一系列的实验研究.与其他采用高速CCD进行的研究不同,本文研究的主要手段是两个带有狭缝的光电倍增管,数码相机和电学测量.虽然这些实验条件相对比较简陋,但是本文仍然根据这些实验结果探讨了等离子体射流的形成机理,传输特性,以及影响等离子体射流长度的实验参数,并发现了“电荷溢流”现象.
关键词:
介质阻挡放电
电晕放电
大气压等离子体射流
电荷溢流 相似文献
13.
通过仿真和实验相结合的手段,以直流脉冲电压驱动的双环电极结构He大气压等离子体射流为例,研究了电压上升沿时间对管内放电等离子体发展演化特性的影响.随着电压上升沿的改变,管内介质阻挡放电(dielectric barrier discharge, DBD)区出现空心和实心两种放电模式.上升沿为纳秒和亚微秒量级时,以空心模式发展,上升沿持续增加后转变为实心模式.放电模式本质上受鞘层厚度、管内电场和表面电荷密度分布的影响,鞘层厚度小于1.8 mm时等离子体通常以空心模式传播,等于1.8 mm时等离子体的径向传播范围有限而转变为实心传播.管内DBD区,电场以轴向分量为主时,等离子体以放电起始时的模式传播;而在地电极内部,由于外施电场方向发生径向偏转,同时管壁沉积的正电荷形成径向自建电场,两者叠加形成的强径向电场致使放电以空心模式传播. 相似文献
14.
采用二维轴对称流体模型对比研究了3种不同电极结构下大气压Ar等离子体射流的基本特性。第一种是带绝缘介质的针电极结构(电场方向和气体流方向平行),第二种是在第一种电极结构的介质管外增加一个垂直气流方向的接地环电极,第三种是不带绝缘介质的裸针电极结构。研究结果表明,接地环电极的引入对介质管内外的射流传播影响不同。在介质管内,接地环电极使管内表面附近的径向电场增加,电子密度升高,射流传播速度加快,但对中心轴附近的电场和电子密度影响很小;然而在介质管外,接地环电极的引入导致轴向和径向电场均减小,从而引起射流的传播长度减小,射流通道径向收缩。通过带绝缘介质的针电极和裸针电极结构的对比研究发现,保持其他条件不变,去掉包裹在针电极上的介质后,由于等离子体电势升高,电场增加,射流的传播长度几乎增加一倍,峰值电子密度增加近一个数量级,而且在整个射流通道内电子密度都保持相对高的值。此外,对3种电极结构下的主要活性粒子的产生和输运进行了比较研究。 相似文献
15.
有许多种方法可用于在大气中产生等离子体射流,冷等离子体(离子温度在室温附近)射流即是其中的一种.近年来,人们发现氦气或其它惰性气体通过毛细管介质阻挡放电形成的冷等离子体射流具有类似子弹的传输特性,在有机材料表面改性、等离子体医学等领域获得了广泛的应用.通过专门设计的一系列实验,我们逐渐揭示了其产生机理,并深入研究了传输特性.文章简要介绍近年来我们所做的有关大气压冷等离子体的实验过程以及获得的一些重要结论.在对这种等离子体深入了解的基础上,作者还开发了一种新装置,该装置的最大特点是既利用了氦气在辅助放电方面的特性,又不消耗这种昂贵的资源;并且它还特别适合于在臭氧层修复、等离子体医学等方面的应用. 相似文献
16.
为了产生高能等离子体合成射流,设计了一台面向等离子体合成射流应用的微秒脉冲源,输出电压为10 kV,重复频率为100 Hz,可承受高达250 A的放电电流。详细介绍了微秒脉冲源的工作原理,比较了不同放电电容对脉冲变压器原边电流及输出电压的影响。进一步将所设计的微秒脉冲源成功应用于等离子体合成射流实验中,研究了不同间距对等离子体合成射流的影响,比较了有无放电电容条件下的能量消耗率。实验结果表明:不同放电电容在相同激励器间距的条件下,击穿电压基本相同;击穿电压随激励器间距增大而增大。有放电电容能产生较大的放电电流,且电流值随电容值的增大而增大。有放电电容条件下的能量消耗率比无放电电容要高,易于产生高能的等离子体合成射流。 相似文献
17.
为了产生高能等离子体合成射流,设计了一台面向等离子体合成射流应用的微秒脉冲源,输出电压为10 kV,重复频率为100 Hz,可承受高达250 A的放电电流。详细介绍了微秒脉冲源的工作原理,比较了不同放电电容对脉冲变压器原边电流及输出电压的影响。进一步将所设计的微秒脉冲源成功应用于等离子体合成射流实验中,研究了不同间距对等离子体合成射流的影响,比较了有无放电电容条件下的能量消耗率。实验结果表明:不同放电电容在相同激励器间距的条件下,击穿电压基本相同;击穿电压随激励器间距增大而增大。有放电电容能产生较大的放电电流,且电流值随电容值的增大而增大。有放电电容条件下的能量消耗率比无放电电容要高,易于产生高能的等离子体合成射流。 相似文献
18.
利用纳秒脉冲放电在单针、环状、以及单针加环状三种不同电极结构下产生了均匀稳定的等离子体射流;通过光学和电学诊断研究了三种不同结构下等离子体射流的运行特性及相应的物理机制。实验结果表明,以上三种等离子体射流的转动温度均为295K,振动温度分别为1900K,2000K和2100K,都属于非平衡态等离子体;其中,基于单针和环状电极的混合型射流可产生更为均匀稳定的等离子体,且富含较多的活性物种,有望在材料表面处理及消毒灭菌等领域发挥一定作用。 相似文献
19.
大气压直流微等离子体射流研究 总被引:3,自引:0,他引:3
介绍了一种结构简单、 制作方便的微米量级大气压等离子体射流。这种微等离子体射流由直流电源驱动,可在多种工作气体(如Ar,He,N2等)中实现大气压放电,产生高电流密度的辉光放电。为了确定微等离子射流产生的激发物种成分,测量了以Ar和N2为工作气体的等离子体发射光谱。利用发射光谱相对强度比值法测量了氩气微等离子体射流的电子激发温度。实验显示,其电子激发温度约为3 000 K,这远低于大气压等离子体炬的电子激发温度。利用N2的二正带发射光谱得到微等离子体的振动温度约为2 500 K;利用其电学参数估算电子密度在1013cm-3量级。利用此微等离子体射流进行了普通打印纸表面处理的应用实验。结果显示,这种微等离子体射流能够明显的提高普通打印纸的亲水性。 相似文献
20.
为掌握反应器结构参数和放电参数对大气压非平衡等离子体射流(N-APPJ)的射流长度的定量影响,设计了多结构的针-环式电极氩气等离子体射流装置,分别研究了放电电压、电极间隙、高压电极放电末端与接地电极的距离及氩气体积流量对射流长度的影响,并采用发生光谱法对该反应器产生的等离子体电子激发温度进行了计算。结果表明:等离子体射流的最大长度可达80 mm;高压电极放电末端与接地电极之间的距离越大,射流长度越长但不是线性增长;射流长度随电极间隙的增加呈现先增大后减小的趋势且在电极间隙为4.5 mm时该射流达到最大长度;随着氩气体积流量的增加,等离子体射流长度也呈现出先增大后减小的趋势且减小的幅度较低;电子激发温度在高压电极和接地电极处较高,两电极之间部分次之,在石英管出口处会有比较明显的下降。 相似文献