首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Functionalized n-alkanethiols such as 11-mercaptoundecanoic (MUA) and 3-mercaptopropionic (MPA) acids are likely to adsorb in silver nanoparticles (AgNPs) solely through the thiol group (-SH) or also involving the carboxylate group (−COO) in their structures. The relative tendency is closely related to pH conditions, solvent or the surface potential of the metallic nanoparticles. The SERS effect (Surface Enhancement Raman Scattering) was used for improving the understanding of MUA and MPA group interaction as well as the orientation of these organic compounds adsorbed on AgNPs and the influence of Cu(II) in solution. When analyzing the MPA SERS spectrum, it was verified that the thiol moiety was preferred to adsorb on the AgNPs surface in the thiolate form, presenting both anti and gauche conformations in both acidic and basic media. MUA SERS spectrum however, indicated that solely an anti conformation for the thiol moiety adsorbed on the AgNPs surface in both acidic and basic media. Adding Cu2+ ion resulted in coordination to the carboxyl or carboxylate moieties was confirmed by the downshift of the band assigned to OCO stretching. The presence of Cu(II) increased the tendency of gauche conformation for MPA; the coordination of MUA to Cu(II) resulted in a more upright conformation of the carboxylic/carboxylate moieties in both acidic and basic media, respectively.  相似文献   

2.
Surface-enhanced Raman scattering (SERS) has been used to investigate the adsorption of methamphetamine hydrochloride (MA) on AgNPs surfaces characterized by the dispersion of AgNPs on agarose gel (AgNPs/Agar). The AgNPs/Agar was characterized by transmission electron microscopy (TEM) as being formed by AgNPs with a mean diameter of 13.5 nm. The AgNPs/Agar films presented a surface plasmon resonance absorption band centered at 421 nm. SERS spectra, excited at 632.8 nm, of MA adsorbed onto AgNPs/Agar films were recorded for MA concentrations down to 1.0 × 10−5 mol L-1. The results have also shown that MA adsorbs on the Ag surface forming ionic pairs with adsorbed chloride following a Frumkin adsorption isotherm with a ΔGads of −24 kJ mol-1 and a g parameter characteristic of attractive lateral interaction. The AgNPs/Agar SERS substrate was further evaluated for MA detection on latent fingerprints (LFP). The AgNPs/Agar films prove to be a suitable substrate for recording fingerprints contaminated with MA making possible the detection of ca. 190 μg of MA, before and after LFP development. The SERS signal of MA adsorbed onto AgNPs/Agar films remained stable for at least 180 days.  相似文献   

3.
The interfacial behaviour of p-aminobenzoic acid (PABA) at the mercury/aqueous solution interface was examined and compared with that of its antimetabolites (sulpha drugs). On qualitative grounds the adsorption process of PABA is quite similar to that of its antimetabolites. It was shown that the common framework of the molecule, p-NH2φ-XO2- (XC or S), is adsorbed flat on the electrode surface and that the two groups of atoms always present in the different compounds, i.e. the p-amino group and the two oxygen atoms, are directly involved in the interaction with the charged surface.These results imply a possible role of an adsorption step in the mechanism of action of the sulpha drugs at the biological level.  相似文献   

4.
Local structures on electrode interfaces can be explored by quantum chemical investigation of medium-sized systems consisting of a cluster of substrate (metal) atoms, one or several solvent molecules, and/or at least one ion to be adsorbed at the interface. For the study of water adsorption and halide ion adsorption (unhydrated as well as hydrated) on a mercury surface, we have used the standard CNDO method together with geometrical optimization of the atom positions.In this paper, the following topics have been treated: (a) adsorption of a single water molecule in different positions on a close-packed plane cluster of seven mercury atoms; (b) adsorption of unhydrated halide ions (Cl?, Br?, I?) in the “on-top” or hollow position on the mercury surface; (c) adsorption of monohydrated halides on the mercury surface. Further studies including solvation by six water molecules are discussed.The calculations provide information about minimum-energy geometries, energetic data, and local charges. Furthermore, they allow some conclusions about water mobility and reorientation on a close-packed metal surface, water orientation under the combined influence of an adsorbed ion and the metal surface, and trends of charge distribution in the halide series to be drawn. Calculations are critically discussed in the light of experimental and other quantum chemical data.  相似文献   

5.
《Vibrational Spectroscopy》2009,49(2):202-205
1H-1,2,4-triazole is a very effective corrosion inhibitor for copper. The adsorption of this compound on silver colloidal nanoparticles has been studied by means of surface enhanced Raman scattering (SERS). SERS data are interpreted with the help of DFT calculations of models of the surface complex formed by 1H-1,2,4-triazole on the silver colloidal nanoparticles surface. It was found that this compound is adsorbed on metal surface in its anionic form and that it interacts with silver through the N1 and N2 atoms. The molecular plane assumes a tilted orientation with respect to the silver surface.  相似文献   

6.
The fluctuation of surface-enhanced Raman scattering (SERS) spectra has been an obstacle to the analysis of the adsorbate on the metal surface. In this paper, we aim at using the density functional theory (DFT) to study the fluctuant Raman spectra of the cytosine molecule which interacts with a coinage metal atom or cation via N1 and N3 sites. The results show that the adsorption site strongly influences the Raman spectral property of cytosine molecule, especially the relative intensity of some bands. In addition, the SERS spectra of cytosine which is adsorbed on the gold, silver, and copper electrodes are measured, and the possible orientation and adsorption site of the cytosine molecule adsorbed on metal electrodes surface are proposed with the help of DFT simulations.  相似文献   

7.
Adsorption of asphaltenes onto a polar substrate (e.g., a mineral) was modeled with dissipative particle dynamics (DPD) simulations, using continental asphaltene models. The adsorption mechanisms in 10–20% wt, of asphaltene in toluene/ heptane solutions were studied (well above the solubility limit). The structure in the adsorbed layer was highly sensitive to the presence of polar groups in the alkyl side chains and heteroatom content in the aromatic ring structure. Four types of asphaltene models were used: completely apolar (zero adsorption), apolar chains and polar heteroatoms, polar chains and no heteroatoms, and polar chains and heteroatoms (maximum adsorption). One hundred asphaltene monomers were distributed homogeneously in the solvent initially, in a ~(10 nm)3 domain.

Asphaltene monomers adsorbed irreversibly on the substrate via the polar group in the side chains, resulting in an average perpendicular orientation of the aromatic rings relative to the substrate. More frequent π–π stacking of the aromatic rings occurred for less solubility (more heptane), as in aggregates. With apolar side chains, only the heteroatoms in the aromatic ring structure had affinity to the substrate, but the ring plane did not have any preferred direction.

An important finding is that the aromatic ring assemblies “shielded” the substrate and polar groups that were anchored to the substrate, resulting in an effective non-polar surface layer seen by asphaltenes in the bulk, leading to much lower adsorption probability of the remaining asphaltenes. This “adsorption termination” effect leads to mono-layer formation. Continued adsorption with multilayering and reversible nanoaggregate adsorption occurred when both side chains in the model asphaltene (located on opposite sides of the aromatic sheet) contained polar groups, with a higher probability of exposing further polar groups to the bulk asphaltene. The general conclusion is that the number and position of the polar groups in side chains determine to a large degree the adsorption and aggregation behavior/efficiency of (continental) asphaltenes, in line with experimental evidence. The heteroatoms in the aromatic ring structure plays a more passive role in this context, only by providing organization via more π–π stacking in the adsorbed layer, and in aggregates.  相似文献   

8.
The logarithmof the rate constant for CHBr2COO? electroreduction at constant applied potential, corrected for diffuse-layer effects according to Frumkin, varies linearly with the charge density qi due to specifically adsorbed supporting ions. The rate of decrease ofwith increasing |qi| as observed in the presence of the adsorbed anions Br?, N3?, and SCN? is about 5 times less than the rate of increase ofwith increasing the charge qi due to adsorbed Tl+ cations. This behaviour, analogous to that observed in the reduction of the CCl3COO? ion [4], has been explained by considering that the time of adsorption of the electroactive anion CHBr2COO? is long enough to cause a perturbation in the distribution of the adsorbed supporting ions in the neighbourhood of the adsorbed anionic reactant.  相似文献   

9.
The adsorption of adenine, deoxyadenosine, deoxyadenosine-5′-monophosphate,-diphosphate and-triphosphate on a gold electrode has been studied by specular reflectivity measurement in 0.1 M NaClO4 solution. In the presence of these compounds, a marked decrease in reflectivity was found on reflectivity-potential curves in the potential region more positive than ?0.8 V vs. Ag/AgCl, the decrease being ascribed to the adsorption of them. The magnitude of change in reflectivity was dependent on both the concentration and the electrode potential. The reflectivity change observed in the negative potential region was analyzed quantitatively according to the procedure previously described. The results were elucidated on the basis of the same isotherm as used by Green and Dahms in their adsorption study of aromatic hydrocarbons, and the number of solvent molecules being replaced through the adsorption of one organic molecule and the free energy change of adsorption were obtained. The former is suggestive of a flat orientation of the adsorbed molecule in contact with its adenine moiety on the electrode surface. It is also suggested from the latter that the presence of phosphate groups leads to a decrease in ΔGad0 resulting from their hydrophilic properties and a repulsive interaction between these groups and the negative charges on the surface.  相似文献   

10.
11.
The adsorption of the [Ru(CN)5(pyS)]4− (pyS=4-mercaptopyridine) ion complex on gold, silver and copper surfaces has been studied by surface-enhanced Raman spectroscopy (SERS). The influence of the nature of the metallic substrates in the adsorption geometry of the complex is reflected in a strong variation of the SERS spectra, particularly, the relative intensities of characteristic vibrational modes of pyS and CN ligands, which is likely to result from changes in specific chemical interactions involving both ligands and the surface. The effect of the surface modification procedure on the properties of the adsorbed monolayers has also been investigated for the gold surface. Surface modification has been performed by self-assembly or under an electrochemical potential. The spectroscopic results have shown that, according to the modification procedure, the modifier can be bound to the surface via sulfur atom or via CN nitrogen atoms. The ability to control the orientation of the adsorbed monolayer permits control over the properties of the interface, as demonstrated by the study of the electrochemistry of cytochrome-c (cyt-c) on the differently prepared surfaces. A reversible electrochemical response of the metalloprotein is only observed on the self-assembly prepared surface, where CN moieties of the surface modifier are available to interact with the protein molecule.  相似文献   

12.
Graphene oxide (GO) and silver nanoparticles (Ag NPs) sequentially decorated nitrogen‐doped titania nanotube array (N‐TiO2 NTA) had been designed as visible‐light‐driven self‐cleaning surface‐enhanced Raman scattering (SERS) substrate for a recyclable SERS detection application. N‐TiO2 NTA was fabricated by anodic oxidation and then doping nitrogen treatment in ammonia atmosphere, acting as a visible‐light‐driven photocatalyst and supporting substrate. Ag/GO/N‐TiO2 NTA was prepared by decorating GO monolayer through an impregnation process and then depositing Ag NPs through a polyol process on the surface of N‐TiO2 NTA, acting as the collection of organic molecule and Raman enhancement. The SERS activity of Ag/GO/N‐TiO2 NTA was evaluated using methyl blue as an organic probe molecule, revealing the analytical enhancement factor of 4.54 × 104. Ag/GO/N‐TiO2 NTA was applied as active SERS substrate to determine a low‐affinity organic pollutant of bisphenol A, revealing the detection limit of as low as 5 × 10?7 m . Ag/GO/N‐TiO2 NTA could also achieve self‐cleaning function for a recycling utilization through visible‐light‐driven photocatalytic degradation of the adsorbed organic molecules. Ag/GO/N‐TiO2 NTA has been successfully reused for five times without an obvious decay in accuracy and sensitivity for organic molecule detection. The unique properties of this SERS substrate enable it to have a promising application for the sensitive and recyclable SERS detection of low‐affinity organic molecules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The rate constant kf for CCl3COO? electroreduction at constant applied potential, once corrected for diffuse-layer effects according to Frumkin, still depends on the charge density qi due to specifically adsorbed supporting ions. Thus, in the presence of the adsorbed anions Br?, I?, SCN? and N3?, the logarithm Φ of the rate constant corrected for diffuse-layer effects decreases linearly with |qi|, albeit slightly. In the presence of the adsorbed cations Tl+ and C(NH2)3+, Φ increases with the positive charge density qi due to the cation at a rate which is 3 to 8 times greater than the corresponding rate of decrease in the presence of the adsorbed anions. This behaviour has been interpreted on the basis of the theoretical treatment of ref. 22 by considering that the time of adsorption of the electroactive anion CCl3COO? is long enough to permit a perturbation in the distribution of the adsorbed supporting ions in the immediate vicinity of the adsorbed reactant.  相似文献   

14.
陈万喜  蒋化  徐铸德  陆云 《中国化学》1999,17(2):125-131
SERS technique was used to study the chemisorption kinetics of Methylene Blue (MB) on the HNO3-etched silver surface. The adsorption kinetic parameters were deduced from different vibrational modes at a low concentration of 3.5×10-6 mol/L, and it showed that MB adsorbed uniformly (monolayerly) on silver surface. However, the adsorptive behavior turned anomalous at relatively higher concentrations and a possible explanation was suggested. In addition, the influence of Cl- ions on the adsorption states of MB was investigated, and it was shown that MB molecules, adsorbed on the silver surface, tended to transform from the "lying-down" state to the "end- on"4 state after Cl- ions were added.  相似文献   

15.
The adsorption and related interfacial behavior of uracil at a mercury electrode/electrolyte solution interface has been studied by differential capacitance and maximum bubble pressure methods in 0.5 M NaF plus 0.01 M Na2HPO4 buffer pH 8.0. At concentrations below 24 mM uracil is adsorbed in a flat orientation on the electrode surface and occupies an area of 63 Å2. At higher concentrations and at potentials close to ?0.5 V the adsorbed uracil undergoes a reorientation and adopts a perpendicular stance on the electrode surface where it occupies an area of 39 Å2. In this perpendicular stance uracil undergoes a strong intermolecular stacking interaction with its neighbors similar to that observed between adjacent pyrimidines in nucleic acids.  相似文献   

16.
The adsorption of succinonitrile (SN) on a polarized Hg electrode has been studied from 0.25 M NaF aqueous solutions by means of both capacity and electrocapillary curves. Adsorption isotherms have been found to be strictly congruent with respect to both charge and potential. The charge of maximum adsorption is at ?4.6 μC cm?2 and ΔGads0, the free energy of adsorption at zero coverage, decreases more rapidly as the charge is made positive with respect to OmaxM than on the other side. The adsorption obeys a Frumkin isotherm with a=?1.87 corresponding to attraction and saturation concentration of 4.8×10?10 mol cm?2 corresponding to an area per molecule of about 34.5 Å2. Experimental results suggest that SN adsorbs flat on the surface but, unlike acetonitrile and propionitrile, the CN groups are slightly turned towards the solution. This is responsible for the absence of electronic interaction of the CN groups with the metal at positive charges, which is apparent with the other two nitriles. Implications of the particular structure of the adsorbed molecule on the other adsorption parameters are discussed in detail.  相似文献   

17.
Isotherms for the adsorption of β-naphthol from a buffered aqueous solution of 0.5 M K2SO4 onto graphite were detemrined over a range of potential of 1.27 V. The adsorbent was a packed bed of ?100 + 120 mesh graphite powder. Sufficient surface area was available to calculate accurately the amount adsorbed by measuring spectrophotometrically the change in adsorbate concentration in the bulk solution.At all potentials, a Langmuir adsorption isotherm, modified for the displacement of solvent molecules, was followed up to 60–65% of monolayer coverage. The ratio of projected areas of β-naphthol and water molecules was consistent with the experimentally derived number of solvent molecules displaced, six. The largest amount of adsorption observed, 2.5×10?10 mol cm?2, agreed with the calculated monolayer coverage of β-naphthol molecules lying in flat orientation on the graphite surface. Adsorption increased at more positive potentials. Over the range of potential investigated, the adsorbability constant increased sixfold. Desorption was only partially reversible.  相似文献   

18.
Infrared spectra of chlorodifluoromethane (CHClF2) adsorbed on titanium dioxide (TiO2) at room temperature have been investigated for the first time. From the comparison between the adsorption characteristics and the gas-phase spectra it can be deduced that the molecule interacts with the surface Lewis acid site (Ti4+) mainly through the Cl atom even if also the adsorption with one F atom is also observed. Moreover, the spectra show the presence of H-bonds between the CH group and the surface Lewis basic site (OH or O2−). In order to obtain more information on the molecule orientation and the variation of the structural parameters, a DFT-B3LYP study has been carried out considering the anatase (1 0 1) surface and evaluating the adsorption energetics in terms of interaction, distortion and binding energies. The obtained geometries confirm that both the acid-base interactions through Cl or F atoms are possible and suggest the formation of one H-bond between the CH group of the molecule and the Lewis basic site of the surface. The calculated vibrational frequencies of the adsorbed molecule have been found to be in reasonable agreement with the experimental data.  相似文献   

19.
《印度化学会志》2022,99(11):100749
Porous metal organic frameworks (MOFs) has shown large surface area and high micropore volume making it a promising electrode material for sensing devices. Adsorption and electronic sensitivity of copper-based open metal sites paddlewheel (Cu2(HCOO)4) towards polar, moderately polar, and non-polar organic solvent vapors (OSVs) were was investigated using density functional theory, employing B3LYP. The most stable adsorption structures were those with the OSVs interacting with the metal node of PW. Based on calculations, the adsorption energy of molecules is in the range of ?7.8 to ?24.8 kcal/mol, ?9.2 to ?25.7 kcal/mol, and ?6.6 to ?10.9 kcal/mol for polar, moderately polar, and non-polar OSVs, respectively. Also sensing activities of PW were studied from three points of view band gap changing, sensing factor, and work function changes. From the standpoint of conductivity changing, Cu-PW has (i) low sensitivity to acetonitrile, acetone, dimethyl formamide, dimethyl ether, benzene, and ethanol; (ii) moderate sensitivity to toluene, and (iii) strong sensitivity to THF detection so that its HOMO/LUMO gap of the PW is significantly decreased from 1.63 to 0.97 eV which may increase the electrical conductivity, sensing factor is 1.4 * 1011, and work function changing is 0.45 eV after THF adsorption. Thus, we suggest that Cu-PW may be used as a highly sensitive/selective and multi-time reusable sensor material for THF detection.  相似文献   

20.
《Vibrational Spectroscopy》2009,49(2):210-214
Raman spectra of para-nitro-aniline (pNA), a molecule with high applicability potential in molecular electronics, were recorded in solid state and in ethanol solution. Complete assignment of the experimental spectra was made by using the B3LYP/6-31G(d) theoretical results. The calculated molecular electrostatic potential shows a high negative charge localized on the nitro group of pNA and the surface-enhanced Raman scattering (SERS) spectrum of pNA adsorbed to colloidal silver particles denote the molecule interaction with the silver surface mainly through the nitro group. However, theoretical results obtained by modeling the pNA–4Ag complex also suggest the adsorption of pNA through the amino group or a flattened orientation of pNA with respect to the silver surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号