首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tris(2,4,6-trimethylphenyl)antimony dihydroxide, Mes3Sb(OH)2, which was prepared by oxidation of Mes3Sb with H2O2, has been shown to react with RSO3H (R = C6H5, CF3) to give the adducts Mes3SbO · HO3SR, the first examples of solid hydrogen-bonded adducts of a triorganoantimony oxide and an acid. The crystal structure of Mes3SbO·HO3SC6H5 has been determined. The three C(mesityl) atoms and the O atom form a distorted tetrahedron around Sb, the distortion by the bulky mesithyl groups being reflected in the CSbC angles (mean: 114.7(3)°) and the CSbO angles: (mean: 103.5(2)°). C6H5SO3H is linked via a short hydrogen bond to O on Sb, with O(1) z.;O(2) = 256(1) pm. The bond length SbO(1) 189.4(5) pm represents the shortest SbO distance ever reported.  相似文献   

2.
Microwave spectra of C5 H5 BeH, C5 H5 BeD, 13CC4 H5 BeH, and 13CC4 H5 BeD are reported. The molecule is a C5v symmetrical top. The BeH bond length was found to be 1.32 Å with an error limit of 0.01 Å and the CC bond length was determined as 1.423 Å with one standard deviation of 0.001 Å. The distance from the beryllium atom to the centre of the cyclopentadienyl ring, h, and the CH bond length were assumed to be 1.49 Å and 1.09 Å, respectively. The dipole moment was determined through the Stark effect to be 2.08 D with one standard deviation of 0.01 D. Four different vibrationally excited normal modes were identified and their frequencies determined by relative intensity measurements.  相似文献   

3.
The crystal structure of [(C8H12)Ir{P(OC6H3Me)(OC6H4Me)2} {P(OCH2)3CMe}] has been determined. a 18.32, b 18.98, c 9.35 Å, U 3251 Å3, Pn21a, Z = 4, R = 0.048, 2541 observed data.The coordination about the iridium atom is distorted trigonal bipyramidal; the two phosphorus atoms are equatorial, the σ-bonded carbon is axial, and the bidentate cyclooctadiene is bonded axialequatorial. The IrC(axial) bonds are longer than the IrC(equatorial) bonds: 2.22, 2.26; 2.17, 2.19 Å. The IrC(σ) bond length is 2.19 Å, not significantly different from the formally π-bonded C to Ir distances. The IrP lengths of 2.201 and 2.240 Å and the PIrP angle of 108.7° are normal. The longer IrP bond is in the five-membered chelate ring. The inertness to substitution is discussed.  相似文献   

4.
A series of [3]ferrocenophanes of general formula Fe(C5H4X)2YCl2 and the spiro compounds [Fe(C5H4X)2]2Ge (X = S, Se; Y = Ge, Sn) have been prepared by the reaction of ferrocene 1,1′-dithiol and ferrocene 1,1′-diselenol with tetrahalides of germanium and tin. Spectroscopic properties of the compounds are reported. In solution, the compounds are fluxional by a bridge reversal process. The crystal structure of 1,3-diselena-2,2-dichlorogermyl-[3]ferrocenophane at 163 K. has been determined by X-ray diffraction methods. At that temperature, crystals have space group P21/n with a 6.222(3), b 16.156(13), c 12.968(4) Å, β 97.53(1)° and Z = 4. Least-squares refinement gave R = 0.033 for 2834 unique significant reflections whose intensities were measured by counter diffractometry. The two SeGe bond lengths are 2.323 and 2.325(1) Å, with GeCl 2.148 and 2.161(1) Å. The SeGeSe bond angle is 118.2(1)°, ClGeCl 104.7(1)°, and SeGeCl angles range from 106.2 to 109.8(1)°. The SeC bond lengths are 1.901 and 1.904(5) Å, with CSeGe angles of 95.8 and 96.5(2)°. The cyclopentadienyl rings are in an eclipsed conformation with a mean twist angle of 2.7°, and are inclined to one another at 6.1°. The Se atoms are displaced from the ring planes by 0.17 and 0.20 Å yielding a non-bonded intramolecular Se…Se contact of 3.99 Å.  相似文献   

5.
The crystal and molecular structure of 9-methyl-9-phenyl-9,10-dihydro-9-sila-3-azaanthrone has been determined from three-dimensional X-ray diffraction data. The title compound crystals are monoclinic, space group P21/b, a = 12.818(2), b = 16.508(2), c = 7.694(1) Å,γ = 105°, 34′(2), Z = 4 and Dcal = 1.278 g cm?3. The structure was determined by direct methods and refined by full-matrix least-squares calculations in the block-diagonal anisotropic approximation for non-hydrogen atoms to R = 0.043 for 2190 independent reflections, registered at room temperature. This is the first crystal structure determination of a Si-dihydroanthracene derivative with two heterocycles and a planar carbon atom in the C10-position. The tricyclic fragment takes up a planar configuration, the silicon atom having a tetrahedral surrounding, with an endocyclic angle of 103.7(1)° and average bond length SiC, 1.862(1) Å. The CO, 1.220(2) Å, bond length in the carbonylic group exactly corresponds with the double bond length. Average distance NC is 1.335(3) Å, angle CNC, 116.5(2)°.  相似文献   

6.
The photochemical reaction between the antiferromagnetic complex (C5H5-CrSCMe3)2S (I) (containing a CrCr bond 2.689 Å long) and Fe(CO)5 results in the elimination of two carbonyl groups and one tert-butyl radical to give (C5H5Cr)22-SCMe3)(μ3-S)2 · Fe(CO)3 (III). As determined by X-ray diffraction, III contains a CrCr bond of almost the same length as in I (2.707 Å), together with one thiolate and two sulphide bridges. The latter are also linked with the Fe atom of the Fe(CO)3 moiety (average FeS bond length 2.300 Å). Fe also forms a direct bond, 2.726 Å long, with one of the Cr atoms, whereas its distance from the other Cr atom (3.110 Å) is characteristic for non-bonded interactions. Complex III is antiferromagnetic, the exchange parameter, ?2J, values for CrCr, Cr(1)Fe and Cr(2)…Fe are 380, 2600 and 170 cm?1, respectively. The magnetic properties of III are discussed in terms of the “exchange channel model”. The contributions from indirect interactions through bridging ligands are shown to be insignificant compared with direct exchange involving metalmetal bonds. The effects of steric factors and of the nature of the M(CO)n fragments on the chemical transformations of (C5H5CrSCMe3)2S · M(CO)n are discussed.  相似文献   

7.
The title compound has been prepared by reaction of (C5H5)2Cr with oxindole (indole with CO in place of CH2 at the 2-position). Red single crystals belong to space group P21/c with a = 10.107(4) Å, b = 22.496(7) Å, c = 9.210(3) Å, β = 93.26(3)°, V = 2091(2), and Z = 2. The centrosymmetric molecule has a CrCr distance of 2.495(4) Å. The mean CrO and CrN distances for the bonds to bridging oxindolate anions are 2.024(7) and 2.065(8) Å, respectively. There is an oxindole molecule bound at each end with a CrO axial bond of length 2.341(8) Å and a hydrogen bond from the oxindole NH group to an equatorial oxygen atom of length 2.83(1) Å. The significance of this compound with respect to CrCr bonding is discussed.  相似文献   

8.
Synthesis, Structure, and Properties of [nacnac]MX3 Compounds (M = Ge, Sn; X = Cl, Br, I) Reactions of [nacnac]Li [(2,6‐iPr2C6H3)NC(Me)C(H)C(Me)N(2,6‐iPr2C6H3)]Li ( 1 ) with SnX4 (X = Cl, Br, I) and GeCl4 in Et2O resulted in metallacyclic compounds with different structural moieties. In the [nacnac]SnX3 compounds (X = Cl 2 , Br 3 , I 4 ) the tin atom is five coordinated and part of a six‐membered ring. The Sn–N‐bond length of 3 is 2.163(4) Å and 2.176(5) Å of 4 . The five coordinated germanium of the [nacnac]GeCl3 compound 5 shows in addition to the three chlorine atoms further bonds to a carbon and to a nitrogen atom. In contrast to the known compounds with the [nacnac] ligand the afore mentioned reaction creates a carbon–metal‐bond (1.971(3) Å) forming a four‐membered ring. The Ge–N bond length (2.419(2) Å) indicates the formation of a weakly coordinating bond.  相似文献   

9.
The 2,6-di-t-butyl-4-methylphenoxo ligand (ArO?) is ambidentate, giving rise to the O-bonded 15-electron d1 [Ti(η-C5H5)2OAr] and the η5 -[C(2)-C(6)]-bonded 18-electron d8 complex [Rh(ArO-η5)(PPh3)2], obtained from [{Ti(η-C5H5)2Cl}2]-LiO Ar and [Rh{N(SiMe3)2}(PPh3)2]-ArOH, respectively; the average TiC(η) distance is 2.362(10) Å, TiO 1.892(2) Å, and O:C(of Ar) 1.352(3) Å, and TiOC 142.3(2)°; in the RhI complex, C(2)C(6) are coplanar (with CC(av.) 1.38(2) Å). C(1)O 1.28 Å, and Rh to C(2) C(6) bond lengthsare in the range 2.19–2.65 Å.  相似文献   

10.
Ph3GeSiMe3 and Ph3GeSiMe2Fe(CO)25-C5H5) have been synthesized and their crystal structures determined. The GeSi bond in iron (2.405(2) Å) is longer by 0.021 Å than in the simple germylsilane (2.384(1) Å). The significant shortening of the SiFe bond (2.328(1) Å) in the iron complex compared to that in the analogous Ph3SiSiMe2Fe(CO)25-C5H5) (2.346(1) Å) and spectroscopic data indicate an enhanced SiFe interaction.  相似文献   

11.
The geometrical parameters for the two conformers, gauche (g) and trans (t), of ethylamine have been determined by a joint analysis of the electron diffraction intensity measured in the present study and the rotational constants reported in the literature. The optimized geometries estimated by an SCF MO calculation with a 4-31G(N*) basis set were also used in the analysis to complement the experimental data. The bond lengths (rg) and the bond angels (rz) determined are r(CH)av = 1.107(6) Å r(CN)t = 1. 470(10)Å, r(CN)g = 1.475(10) Å r(CC)t = 1.531(6) Å r (CC)g = 1.524(6) Å , ∠CCN)t = 115.0(3)°, and ∠CCCNg = 109.7(3)°. The uncertainties represent estimated limits of error. The difference between the CCNg and CCNg angles predicted by a previous ab initio calculation is confirmed. The enthalpy difference,ΔH(gt), is determined to be 306(200) cal mol−1 using the abundance of the trans conformer, 46(10)%.  相似文献   

12.
Niobocene trimethylacetate Cp2Nb(OOCCMe3) (I) does not react with usual n-donors (pyridine and triphenylphosphine), but readily adds a π-acceptor molecule of diphenylacetylene (tolane) in benzene to form Cp2Nb(OOCCMe3)(π-Ph2C2) · 0.5 C6H6 (II). The structures of the diamagnetic complexes I and II have been determined by an X-ray diffraction study. These molecules represent wedge-like sandwiches wit dihedral angles between cyclopentadienyl ligands equal to 44.4 and 50.7°, and average NbC distances of 2.39 and 2.44 Å, respectively. The bisector plane of I contains the chelate trimethylacetate group (NbO bond lenghts 2.23 and 2.24 Å) and that of II contains the coordinated tolane molecule and the oxygen atom of the terminal trimethylacetate ligand (NbO 2.16, NbC 2.18 and 2.19, CC 1.29 Å, PhCC angles 141 and 146°). An unusually large splitting of OCO stretching frequencies is observed in the IR spectrum of I (1652?1305 = 347 cm?1). Structural characteristics of the coordinated CC triple bond in II are similar to those found in Cp(π-Ph4C4)Nb(CO)(π-Ph2C2) studied earlier. The role played by the NbIII lone pair in I and II is discussed.  相似文献   

13.
The molecular structure of a three-coordinate palladium(II)-styrene complex, [Pd(η5-C5H5)(PEt3)(styrene)]BF4 has been determined by means of X-ray diffraction. The crystal belongs to the monoclinic system, space group P21/c, with four formula units in a cell of dimensions: a 10.229(3), b 11.262(3), c 18.760(5) Å and β 103.77(2)°. The structure was solved by the heavy atom method, and refined by the least-squares procedure to R = 0.050 for 3635 observed reflections. The palladium atom is surrounded by the cyclopentadienyl group, the triethylphosphine ligand and the olefinic bond of styrene in the cationic complex. In the palladiumstyrene bonding, the olefinic bond is inclined by 77.3° to the coordination plane defined by the Pd and P atoms and the center of the cyclopentadienyl ring (PdC(1) 2.176(6), PdC(2) 2.234(5) and C(1)C(2) 1.369(8) Å).  相似文献   

14.
The title compound, C58H52Sn3, belongs to the triclinic space group P1, with a 10.165, b 13.365, c 18.670 Å, α 96.28, β 93.88, γ 103.15°, V = 2443.8 Å3, fw = 1105.1, Z = 2, Dcalc 1.501 g cm?3, m.p. 206.5–208°C, λ(Mo-Kα) 0.71069 Å. The structure was refined on 2684 nonzero reflections to an R factor of 0.044. The crystal contains molecules in which the (SnCH2)3CH core possesses an approximate C3 symmetry. The three SnC(H2) bonds are gauche to the C(4)-H bond. Repulsive interactions involving the bulky Ph3Sn substituents lead to large SnC(H2)C(H) angles (av. 117.3°), whereas the C(H2)C(H)C(H2) angles at the tertiary carbon average 111.3°. Little distortion of the Ph3Sn groups themselves is present, since the PhSnPh angles (av. 109.8°) are almost equal to the C(H2)SnPh angles (av. 109.9°). The molecule as a whole has no symmetry because the aromatic rings in the three Ph3Sn groups have different orientations. The phenyl groups create a pocket in the middle of the molecule which encloses and shields the tertiary hydrogen atom. The resulting inaccessibility of this hydrogen accounts in part for the low reactivity of the title compound in redox reactions.  相似文献   

15.
The heteronuclear germanium(IV) and neodymium(III) complex with 1,3-diamino-2-propanoltetraacetic acid (H5Hpdta) [Ge(OH)(μ-HHpdta)(μ-OH)Nd(OH)(H2O)3] · H2O has been synthesized for the first time and characterized by physicochemical methods (elemental analysis, X-ray powder diffraction, thermogravimetry, IR spectroscopy, X-ray crystallography). The crystals are monoclinic: a = 9.331(3) Å, b= 10.279(4) Å, c = 21.474(7) Å, β = 94.59(3)°, V = 2053.0(12) Å3, Z = 4, space group P21/n, R1 = 0.0245 for 4060 reflections with I > 2σ(I). The compound is built of complex binuclear molecules [Ge(OH)(μ-HHpdta)(μ-OH)Nd(OH)(H2O)3] and water molecules of crystallization. The germanium and neodymium atoms are bridged by the oxygen atom of the hydroxo group (Ge-O, 1.798(2) Å; Nd-O, 2.539(2) Å) and the deprotonated oxygen atom of the isopropanol group of the HHpdta4? ligand (Fe-O, 1.858(2)Å; Nd-O, 2.420(2) Å) to form a dimeric molecule. Each coordination sphere (of the Ge atom and of the Nd atom) contains one nitrogen atom (Ge-N, 2.096(3) Å; Nd-N, 2.807(2) Å) and two carboxylic oxygen atoms from four acetate branches of the octadentate HHpdta4? ligand (av. Ge-O, 1.928(2) Å; Nd-O, 2.391(2) Å). The coordination polyhedron of the Ge atom is completed to a distorted octahedron by the oxygen atom of the terminal hydroxo group (Ge-O 1.811(2) Å), and the polyhedron of the Nd atom is completed to a nine-vertex polyhedron by the oxygen atoms of the terminal hydroxo group (Nd-O 2.494(3) Å) and three water molecules (Nd-O, 2.512(3), 2.520(3), and 2.723(3) Å). In the crystal structure, the complex molecules and the water molecules of crystallization are joined by a hydrogen bond system.  相似文献   

16.
One of the main products of oxidation of (η5-C5-H5)2Fe2(CO)3Ge(CH3)2 by air has been shown to be [(η5-C5H5)(CO)2FeGe(CH3)2]2O. The infrared, NMR and mass spectra are consistent with this formula and the detailed structure has been established by X-ray crystallography. In polar solvents the NMR suggests the existence of major and minor conformers interconverting only slowly on the NMR time scale at ≈ 25°. The X-ray diffraction study has shown the compound to consist of two (η5-C5H5)(CO)2FeGe(CH3)2 moieties joined by a bridging oxygen atom. Two rotational isomers are present in the unit cell in a disordered fashion. Some pertinent average distances and angles are: FeGe, 2.372 Å; GeO, 1.785 Å; GeOGe′, 134°. The compound crystallizes in the monoclinic system, space group P21/n, with a 8.056(2), b 12.506(2), c 22.631(3) Å, β 98.01(1)°, dcalc 1.692 g cm?3. Counter data were collected using Mo-Kα radiation. The 1780 reflections above background were used in least-squares refinement which converged at R1 = 0.051 and R2 = 0.068.  相似文献   

17.
The crystal structure of [Si(CH3)(t-C4H9)]4 has been determined by single crystal X-ray diffraction. The crystals are tetragonal, P42/n; a = b = 13.069(4), c = 7.880(2) Å, Z = 2. The structure was determined using 745 independent data and refined with anisotropic least-squares to a final unweighted R-value of 3.5%. Each tetrameric molecule was found to be arranged about a 4 axis, with the independent crystallographic unit comprising one silicon atom, one methyl and one tert-butyl group. The four-membered ring of silicon atoms is nonplanar with an unusually large dihedral angle of 36.8°. The principal mean bond lengths are SiSi 2.377(1), SiC(methyl) 1.893(4), SiC(tert-butyl) 1.918(3) Å, and the SiSiSi bond angle is 86.99°. The SiSi bond length is somewhat longer than in other polysilanes.  相似文献   

18.
The structure of di-trans-β-styrylmercury has been determined by single crystal X-ray methods from counter data. The compound crystallizes in the orthorhombic space group Pbcn with unit cell dimensions a 15.413(6), b 11.161(9), c 7.668(5) Å, V 1319(1) Å3, Dcalc 2.049 g/cm3, and Z = 4. The crystal was solved by conventional heavy atom techniques. The crystal consists of individual molecular units with the mercury atom located on a two fold axis of symmetry. The CHgC fragment is nearly linear with an angle of 178°. The β-styryl groups are oriented so that a dihedral angle of 66.8° is formed between the planes defined by HgC(1)C(2) and HgC(1)′C(2)′ fragments. The HgC bond distance is 2.07(4) Å.  相似文献   

19.
Bis(cycloocta-1,5-diene)platinum reacts with 2,3,4,5-tetraphenylfulvene to afford the complex [Pt(η2-CH2C5Ph4)(cod)] (cod  C8H12) in which the metal atom is coordinated to the exo-cyclic double bond of the fulvene. Related compounds [Pt(η2-CH2C5Ph4L2] (L  PPh3, PMePh2, PMe2Ph, AsPh3 or CNBut have also been prepared and characterised. Reaction of the complexes [Pt(C2H4)2(L)] (L  P(cyclo-C6H11)3, PPh3 or AsPh3) with 2,3,4,5-tetraphenylfulvene yields the compounds [Pt(C2H4)(η2-CH2C5PH4)(L)]. NMR data for the new species are reported and discussed. 6,6-Diphenylfulvene reacts with [Pt(cod)2] and PPh3 (12 mol ratio) to give the complex [Pt(η2-C5H4CPh2)-(PPh3)2] in which the metal atom is bonded to carbon atoms C(2) and C(3) of the fulvene ring. This was established by an X-ray diffraction study. Crystals are monoclinic, space group P21/n, with Z  4 in a unit cell of dimensions a  13.761(4), b  21.653(13), c  17.395(6) Å, β,  104.46(2)°. The structure has been solved and refined to R  0.064 (R′  0.064) for 3139 independent diffracted intensifies measured at room temperature. The platinum atom is in a trigonal environment formed by the two ligated phosphorus atoms and the CC bond of the fulvene which is elongated to 1.52(3) Å. The c5 fulvene ring is planar, and makes an angle of 108° with the coordination plane around the platinum. In this plane the metal atom is slightly asymmetrically bonded with PtC 2.15(2) and 2.24(2) Å, and PtP 2.280(6) and 2.301(6) Å.  相似文献   

20.
The compound [(HAlN-i-Pr)2(H2AlNH-i-Pr)3] has been prepared and the crystal and molecular structure determined by an X-ray analysis, carried out with three-dimensional data collected on a diffractometer. The molecule is made up of a cyclohexane-type ring, [(HAlN-i-Pr)2(H2AlNH-i-Pr)], in skewboat conformation, on each side of which is bonded an -H2AlNH-i-Pr- bridging unit between a nitrogen atom and an aluminum atom of the ring. The molecule lies on a binary axis of the crystal, but this symmetry is fulfilled only by a statistical orientation of the asymmetric molecular units (the statistical model is not however completely defined). The AlN bond lengths range from 1.901 to 1.985 Å; the average NC bond length is 1.527(9) Å. Main crystal data are: monoclinic space group C2/c; a = 10.15(2), b = 21.64(3), c = 12.84(2) Å, β = 111.9(5)°; Z = 4; calculated density 1.095 g/cm3. The structure was solved by direct methods and block-matrix least-squares converged to an R value of 5.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号