首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-flow ultrafiltration and microfiltration have been used to recover refined soy sauce from soy sauce lees for over 25 years. The precise mechanism which dominated the permeate flux during batch cross-flow filtration has not been clarified. In the present study, we proposed a modified analytical method incorporated with the concept of deadend filtration to determine the initial flux of cross-flow filtration and carried out the permeate recycle and batch cross-flow filtration experiments using soy sauce lees. We used UF and MF flat membrane (0.006 m2 polysulfone) module under different transmembrane pressures (TMP) and cross-flow velocities. The modified analysis provided an accurate prediction of permeate flux during the filtration of soy sauce lees, because this model can consider the change in J0 at initial stage of filtration which was caused by the pore constriction and plugging inside membrane, and these changes may not proceed when the cake was formed on the membrane surface. Mean specific resistance of the cake increased with TMP due to the compaction of the cake and decreased with cross-flow velocity due to the change of deposited particle size, but less depended on the membrane in the present study. These results indicate that the value of J0 determined by modified method was relevant to exclude the effects of the initial membrane fouling by pore constriction due to protein adsorption and plugging with small particles. The modified analytical method for the cake filtration developed in the present study was considered to be capable of selecting an appropriate operating conditions for many cross-flow filtration systems with UF, MF membranes.  相似文献   

2.
Using the resistance-in-series (RIS) approach to permeate flux modeling, a general relationship between permeate flux, transmembrane pressure, cross-flow velocity, and feed kinematic viscosity was developed for the tubular ultrafiltration (UF) of synthetic oil-in-water emulsions. The fouling layer resistance, Rf, was 63% of the total membrane resistance, Rm′; however, concentration polarization was the predominant factor controlling resistance in the tubular UF system. An explicit form of the resistance index, Φ, was postulated based on the observed interactions between Φ, cross-flow velocity and feed kinematic viscosity and the RIS model was modified to further describe the interactions between permeate flux and operational parameters. The modified model adequately predicted flux–pressure data over the range of experimental variables examined in this study. Additionally, a set point operating pressure was determined as a function of cross-flow velocity and feed viscosity to achieve a balance between polarization and total membrane resistance.  相似文献   

3.
Quantitative analysis of various resistances that lead to flux decline during cross-flow ultrafiltration (UF) of the fermentation broth of Bacillus subtilis ATCC (American Type Culture Collection) 21332 culture was studied. Polyethersulfone membrane with a molecular weight cut-off (MWCO) of 100 kDa was used. Prior to cross-flow UF, the broth was treated by acid precipitation (pH 4.0) and centrifugation, and the precipitate was re-dissolved in NaOH solution. Experiments were performed at a feed pH of 7.0, a feed surfactin concentration of 1.48 g L−1, and a cross-flow velocity of 0.32 m s−1 but at different transmembrane pressures (ΔP, 20–100 kPa). The resistance-in-series model was used to analyze the flux behavior, which involves the resistances of membrane itself and cake as well as those due to adsorption and solute concentration polarization. It was shown that the resistance due to solute concentration polarization and of membrane dominated under the conditions examined. The resistances due to cake formation and solute adsorption were comparable, and their sum contributed below 20% of the overall resistance.  相似文献   

4.
The formation of self-forming dynamic membrane on a porous ceramic support was studied. Pineapple juice of 12° Brix concentration was used in the experiments which were carried out at 25°C by circulating the pineapple juice at the applied pressure of 100, 200, and 300 kPa and at cross-flow velocities of 1.30–2.95 m s−1 through the ceramic membrane module for 1 h. The experimental data of flux and rejections showed that the dynamic membrane was well-formed after 30 min of circulation under the applied pressure of 300 kPa and at a cross-flow velocity of 2.0 m s−1 in which the steady values of flux and rejections of macromolecules and sugars obtained from the filtration mode were 6.0×10−3 m3/m2 h, 84–87% and 6%, respectively. The corresponding values for ultrafiltration by alumina membrane of MW cut-off 50,000, using equivalent conditions, were 15.8×10−3 m3/m2 h, 91% and 10.5%. Ultrafiltration was found to be more promising. The stability of the self-forming dynamic membrane was acceptable when subjected to change of filtration conditions. The permeation flux increased with cross-flow velocity and decreased when the applied pressure was reduced. The resistances for filtration by dynamic membrane and by ultrafiltration were calculated. For a porous support of large pore sizes, an in-pore blockage of solutes which were smaller than the membrane pores reduced the pore volume and induced fouling. Internal fouling resistance (Rf) was, therefore significant and responsible for the values of flux and rejection and was approximately 70% of total resistance. While in ultrafiltration, in which membrane with a smaller pore diameter was used, Rf was only 20% but Rp, the polarized layer resistance, was as high as 60% of total resistance.  相似文献   

5.
The formation of membrane sublayers during cross-flow filtration was studied with a standardized E. coli suspension both in a tubular and a flat channel module with different membrane materials. The height of the layers was calculated for different experimental conditions. Transmembrane pressure, cross-flow velocity, compressibility of the suspended particles, properties of the suspension, particle size and concentration were all found to have a significant effect on the formation of membrane sublayers. A decrease of the layer thickness and corresponding filtration resistance with increasing channel length was observed due to the longitudal transmembrane pressure gradient. The filtration resistance of the layer is found to be the dominant factor determining the flux rate.  相似文献   

6.
The water softening capability of a polymeric NF-based membrane is investigated in a cross-flow mode. Also, the effects of the anion properties binding to the cation in the feed water are investigated. The softening process is monitored using parameters such as apparent rejection, softening factor, relative softened water recovery and the relative softened water purity to assess the effects of the operating conditions on the softening process. Moreover, a combined solution–diffusion/film theory (SDFT) model reduced to Gupta’s model (dilute solutions) is employed to extract three (3) parameters: the hydraulic permeability (Lp), the reflection coefficients (σ) and the solute permeability (ω) which characterizes the membrane. Preliminary, results show the membrane to possess good water softening properties while the charge, size, and the shape of the anions each play a vital role in the water softening process. Thus, the above protocol provides techniques for monitoring, characterizing and selecting potential polymeric membranes for water softening applications.  相似文献   

7.
Dimensional analysis of the mass, length and time shows that the steady state flux observed for microfiltration or ultrafiltration through inorganic composite membrane can be expressed using two dimensionless numbers. The shear stress number NS compares the shear stress against the membrane wall to the driving pressure, while the resistance number Nf compares the convective cross-flow transport to the drived transport through a layer, whose resistance is the sum of all the resistances induced by the different processes which limit the mass transport. Experimental data obtained in ultrafiltration of hydrocarbon emulsions and microfiltration of methanogenic bacteria suspensions and secondary treated wastewater were recalculated in terms of these dimensionless groups. Straight lines were plotted whose slope depends solely on the suspension and the membrane and not on the solute concentration. A negative slope and a positive intersection with the NS axis means that a cake layer or a polarization layer can be completely eliminated at a critical cross-flow velocity; this was the case for an inorganic particles suspension and for the methanogenic suspension. A straight line of negative slope followed by a plateau means that an irreversible fouling is superimposed to the reversible phenomenon; this was observed for a secondary treated wastewater. A positive slope means that fouling predominates; this was observed with hydrocarbon emulsions.  相似文献   

8.
High frequency backpulsing is a promising technique of flux enhancement that could contribute to the development of cross-flow micro-/ultrafiltration in water and wastewater treatment. A systematic study of the influence of the operational parameters was carried out with three suspensions, bentonite in tap water, biologically treated wastewater and activated sludge. The alumina membranes were tubular (0.02, 0.05 or 0.2 μm), with internal or external skin, the latter being not suitable. The technique was particularly efficient for bentonite; a minimal cross-flow velocity was required to reach a net flux independent of the cross-flow. The results are less good for the biological suspensions since the same fluxes could be reached by an increase of cross-flow velocity. However, the energy required by high frequency backpulsing is lower. The average reverse fluxes, measured by a tracer method, are surprisingly high and could hamper the development of the technique. At low Reynolds number (Re=3500), the net flux increased with the reverse flux, then reached a plateau corresponding to the total penetration of the laminar layer against the membrane wall by the backwash water.  相似文献   

9.
Electric field enhanced ultrafiltration of pectin–sucrose mixture (synthetic juice) and mosambi (Citrus sinensis (L.) Osbeck) fruit juice using 50,000 (MWCO) polyerthersulfon membrane is studied in a cross-flow cell. Pectin, completely rejected by the membrane, forms a gel type layer over the membrane surface. Under the application of an external dc electric field across the membrane, gel-layer formation is restricted leading to an enhancement of permeate flux. During ultrafiltration of synthetic juice, application of dc electric field (800 V/m) increases the permeate flux to almost threefold compared to that with zero electric field. A theoretical model based on integral method assuming suitable concentration profile in the boundary layer is developed. The proposed model is used to predict the permeate flux in gel-layer governed electric field enhanced ultrafiltration. Predictions of the model are successfully compared with the experimental results under a wide range of operating conditions. Experiments with fruit juice also demonstrated significant increase in flux with the application of a suitable electric field.  相似文献   

10.
A model for the potential distribution across a charged biological membrane proposed previously by us [Biophys. J., 47 (1985) 673] is extended to a case which includes the effects of binding of monovalent cations. We assume that the membrane has a surface charge layer of thickness d which is permeable to electrolyte ions and in which the membrane-fixed charged groups are distributed at a uniform density N. We also assume that each charged group can bind one monovalent cation with an equilibrium constant K. In the limit of d → 0, keeping the product Nd constant, our model gives the most commonly used model in which ion binding is considered to occur only at the membrane surface (of zero thickness). It is shown that the amount of bound cations as well as the potential distribution are found to depend strongly on d. For example, in 0.1 M 1-1 electrolyte with K = 0.8 M−1, the reduction in magnitude of the surface potential at the outer surface of the surface charge layer of 10 Å thickness is about 40 ∼ 60% of that for the membrane having the surface charge layer of zero thickness, and the deviation of the amount of bound cations for the membrane of d = 10 Å from that predicted for d = 0 is 30–40%, indicating that the conventional model assuming d = 0 leads to a serious overestimation of the surface potential as well as the amount of bound cations onto the membrane.  相似文献   

11.
12.
As one of the most recently developed membrane separation processes, nanofiltration (NF) has found a number of industrial applications. Ceramic NF membranes are also regarded as the appropriate choice in many applications, due to their higher chemical and physical stability. In this study, the rejection of the chloride ion is investigated using bi-layered γ-Al2O3-TiO2 NF membranes based on α-alumina supports. Compression is used in preparation of the supports and sol-gel dip-coating for the top-layer formation. SEM micrographs, XRD, and nitrogen adsorption/desorption isotherms are used for membrane characterisation. The results show that the calcination temperature (600°C) results in different crystal structures including the brookite phase of TiO2, the γ phase of Al2O3, and a combined phase of aluminium-titanium oxides. The average pore size of the membrane was identified as 1.6 nm using an adsorption/desorption isotherm. The rejection was also studied for the chloride ion, using a cross-flow filtration module. Filtration tests were carried out under different pressures, pH values, and salt concentrations; these showed a smoother behaviour particularly around the isoelectric points (IEPs) due to the dual-layer structure, with the best rejection at pH of approximately 5.  相似文献   

13.
The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes controlled by membrane structure, permeability and curvature as well as membrane proteins by using a wide range of biochemical, biophysical and microscopic techniques. This review gives an overview of some currently used model biomembrane systems. We will also discuss some key membrane protein properties that are relevant for protein–membrane interactions in terms of protein structure and how it is affected by membrane composition, phase behavior and curvature.  相似文献   

14.
Fluid mechanics plays an important role in pressure-driven membrane processes. This manifests itself through the convective motion of fluids and its influence on the motion of dissolved and suspended solutes. In this review, we compare impact with cross-flow filtration and summarize the advantages and limitations of different membrane permeators. Then, we present results from recent theoretical studies of flow in an annulus with porous walls, and from recent experiments showing the effect of transmembrane flux on the friction coefficient of a flowing fluid inside a porous tube with suction. We also compare the porous tube with a porous two-walled slit for capturing suspended colloids. The performance of several commercial modules are compared in light of the theory. Under the assumptions of the theoretical models, and all things being equal (besides fractional recovery per unit length), tubular systems will capture more particles from dilute suspensions than slits with two porous walls. This is expected since the fractional recovery for a tube is 2.67 times that for a slit, when υw/Um, L/R and L/l are kept the same. Finally, we also report on a recent significant extension of the lift theory for all laminar flows (even ⪢Re 1) in which results from the previous theory (for ⪡Re 1) hold. Experimental measurements for particle trajectories in porous ducts support these developments.  相似文献   

15.
Lipophilic ions are used as probes for the membrane potential of small cells which are unable to be impaled by microelectrodes. The ambiguity of this estimation is the binding of the probe to the membrane, which gives rise to the overestimation. To remove the ambiguity, the present study was done. The probes used are a homologous series of (Phe)3P+(CH2)nCH3 (n = 0—5) and tetraphenylphosphonium. The membrane used was an envelope vesicle of Halobacterium hatobium which upon illumination generated the interior-negative membrane potential. In the dark, where no membrane potential was generated, the binding to the membrane was measured and analysed with the Langmuir isotherm. Upon illumination, probes were accumulated into vesicles where probes are present in two bound and free populations. Free probe concentration was estimated using various binding models to calculate the membrane potential.  相似文献   

16.
17.
A membrane system only has a limited operational lifetime, whereby it becomes so severely fouled that continued operation must be stopped. In the cross-flow configuration of membrane filtration of wastewater, both increased cross-flow velocities and decreased operational transmembrane pressures can be used to decrease membrane fouling and extend the life cycle of the membrane separation process. The study found that an optimised usage of two de-clogging techniques, with a 1 h production period followed by a 1 min relaxation period and then a 1 min high cross-flow rate period, resulted in a net productivity increase of 14.8%.

The study involved a detailed investigation into the utilization of two automated cleaning techniques to reduce fouling problems encountered when cross-flow membrane systems are operated with high permeate flux rates. The two cleaning techniques studied were periodic membrane relaxation and a periodic high rate cross-flow. During both the relaxation and high rate cross-flow periods, permeate production was stopped. This results in an operational loss in productivity. When each cleaning technique was operated individually, there was a net productivity decrease of 0.7%, due to the 3.2% operational loss due to cleaning technique being implemented.

The system was developed using a Programmable Logic Controller (PLC) and a Supervisory Control and Data Acquisition (SCADA) system to accurately control and monitor the process.  相似文献   


18.
S-Palmitoylated peptides are important tools as models for integral membrane proteins to study peptide-lipid interactions. Herein, we report a convenient solid phase synthesis of S-palmitoyl transmembrane peptides. The highly acid labile S-(4-methoxytrityl) group is preferred over the S-(tert-butylsulfanyl) group for protection of the cysteine side chain since the latter gives rise to quantitative desulfurization during on-resin deprotection. The resulting free thiol function is modified with palmitic acid via a carbodiimide-mediated coupling and the title compounds are obtained in good yields and purity.  相似文献   

19.
A silicon carbide-based membrane was formed in the macropores of an α-alumina support tube by chemical vapor deposition of triisopropylsilane at 700–800°C with a forced cross-flow through the porous wall. The membrane permeated gases except H2O mainly by the Knudsen diffusion mechanism at permeation temperatures of 50–400°C. The H2/H2O selectivity was near or below unity because of the hydrophilic nature of the membrane. After a heat-treatment in Ar at 1000°C for 1 h, however, the membrane formed at a final evacuation pressure of 1 kPa exhibited a H2/H2O selectivity of 3–5, for a mixed feed of H2–H2O–HBr system, associated in a thermochemical water-splitting process. The H2 permeance was (5–6)×10−7 mol m−2 s−1 Pa−1 at 50–400°C. The membrane maintained the H2/H2O selectivity for more than 100 h in the H2–H2O–HBr mixture at 400°C.  相似文献   

20.
The main problem in treating oil/water emulsion from car wash waste-water by ultrafiltration (UF) is fouling caused by oil adsorption on the membrane surface and internal pore walls. This study demonstrates that the addition of bentonite clay can reduce the adsorption layer on cellulose acetate UF membrane, resulting in a reduction of total membrane resistance (Rt). Experiments were conducted to identify and describe three possible mechanisms: (i) bulk oil emulsion concentration reduction; (ii) particle aggregation and (iii) detachment of the adsorbed gel layer by shear force. Adsorption of oil emulsion by bentonite can lead to a significant reduction of bulk oil emulsion concentration, one of the major causes of flux enhancement. Results show that contact of oil emulsion with bentonite forms larger particles resulting in flux increment. An optimum particle size of 37 μm, corresponds with a bentonite concentration of 300 mg/l and provided the highest flux. Beyond this limiting concentration, flux improvement gradually declined, possibly due to the formation of packed cake of particles on the membrane surface. The presence of bentonite in the oil emulsion promotes high shear stress which acts against the gel layer. This high shear stress, caused by bentonite particles and cross-flow velocity, reverses the adsorbed gel layer to the bulk of the liquid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号