首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction between the mixed-metal tetrahedral cluster Co2Rh2(CO)12 (1) and the electron-poor alkyne methyl propiolate in hexane at room temperature furnishes a mixture of products consisting of Co3Rh(CO)12 (2), Co3Rh(CO)10(μ-HCCCO2Me) (3), Co2Rh2(CO)10(μ-HCCCO2Me) (4), and CoRh3(CO)9(μ-HCCCO2Me)3 (5). The isolation and solution spectroscopic data of these compounds are described, and the solid-state structure of Co2Rh2(CO)10(μ-HCCCO2Me) determined by X-ray diffraction analysis. The title cluster crystallizes in the triclinic space group. The solid-state structure of Co2Rh2(CO)10(μ-HCCCO2Me) provides proof for the regiospecific insertion of the methyl propiolate ligand into the Co–Co bond of the starting cluster Co2Rh2(CO)12. The stability of clusters 3 and 4 in the presence of added methyl propiolate is discussed.  相似文献   

2.
The reactions of hydrosilane and/or alkyne as well as isonitriles with rhodium and rhodium cobalt mixed metal carbonyl clusters, e.g., Rh4(CO)12 and Co2Rh2(CO)12, are studied. Novel mixed metal complexes, e.g., CoRh(CO)5 (HCCBu n ), (R3Si)2Rh(CO) n Co(CO)4, Rh(R–NC)4Co(CO)4, Co2Rh2(CO)10(HCCR), and Co2Rh2(CO)9(HCCBu n ), are synthesized and identified. The catalytic activities of these rhodium and rhodium-cobalt mixed metal complexes are examined in hydrosilyation, silylformylation, and novel silylcarbocyclization reactions. Possible mechanisms for these reactions are proposed and discussed.  相似文献   

3.
In the hydroformylation of 1,1,1-trideuterio-2-butene with Rh4 (CO)12 the deuterated pentanals formed contain 75% of 5,5,5-trideuterio-pentanal, the rest being substantially 2,2-dideuterio-pentanal. On the contrary, using Co2 (CO)8 as the catalyst precursor, position 1 and 4 are formylated to the same extent.  相似文献   

4.
The formation of a new compound, the most characteristic IR absorption bands of which appear at 2007 cm-1 and 1956 cm-1, has been in the reaction between Co2(CO)8 and Rh4(CO)12 under carbon monoxide pressure in a hydrocarbon medium. The same compound is also formed either by the reaction of Co2(CO)8 with [Rh(CO)2Cl]2 or by the reaction of Co3Rh(CO)12 with carbon monoxide. The new complex has not been isolated in a pure state, but the formula CoRh(CO)7 is proposed on the basis of the stoichiometry of its formation and its physico-chemical properties. Equilibrium constants and thermo-dynamic parameters for the reaction 2 Co2(CO)8 + Rh4(CO)12  4 CoRh(CO)7 have been estimated. Possible structures for the new complex are discussed on the basis of its IR spectrum.  相似文献   

5.
Summary The carbonyl ligands in the Rh1 complexes Rh(L-L)(CO)2 [L-L=anthranilate (AA) orN-phenylanthranilate(FA) ions] are replaced by P(OPh)3 to form the mono-or disubstituted products, Rh(L-L)(CO)[P(OPh)3] and Rh(L-L)[P(OPh)3]2 respectively depending on the [P(OPh)3]/[Rh] molar ratio, at room temperature and in air. Under argon at [P(OPh)3]/[Rh]4 theortho-metallated Rh1 complex Rh[P(OPh)3]3[P(OC6H4)-OPh)2] is formed. The new route forortho-metallated Rh1 complex synthesis is described.The Rh(AA)(CO)2 complex was used as a catalyst precursor in hydroformylation of olefins.  相似文献   

6.
Investigations on the catalytic activity of a transient Rh(I) triphenylphosphine complex1 anchored on montmorillonite clay have been carried out with respect to hydroformylation of olefins at 70°C and 60 atm of CO+H2 (1:1). The analysis has shown that aldehydes and hydrocarbons of the corresponding olefins result under hydroformylation conditions. In limonene, reaction proceeds with double hydroformylation and hydrogenation to give the respective oxo products. The catalytic activities of1 are compared with Wilkinson's RhI (H) (CO) (PPh3)2 (6) complex in solution under the same hydroformylation conditions.  相似文献   

7.
C−N coupling is significant for the synthesis of fine chemicals toward various applications. Hydroaminoalkylation of olefins is a tandem reaction of C−N coupling involving first the formation of an aldehyde through hydroformylation of an olefin and then the production of amine through reductive amination of the aldehyde. Here we report a stable, supported catalyst of singly dispersed Rh1 atoms anchored on TiO2 (P25) nanoparticles designated as Rh1/P25. Its high activity for C−N coupling was demonstrated by six hydroaminoalkylations of olefins and amines with selectivity of higher than 90% for producing tertiary amines. The singly dispersed Rh1O4 on P25 exhibit activity and selectivity for hydroaminoalkylation comparable or even higher than some reported molecular catalysts. In contrast to molecular catalysts, the Rh-based single-atom Rh heterogeneous catalysis (Rh1/P25) can be readily separated from reactants and products, reused for multiple runs of hydroaminoalkylation, and recycled with a low cost.  相似文献   

8.
Extended Hückel Theory calculations have been carried out in a study of the most important cobalt carbonyls and hydrocarbonyls involved in the hydroformylation reaction. The geometries of the stable isomers of Co2(CO)8, Co2(CO)7, Co(CO)4, Co(CO)3 have been calculated and used to interpret the changes in the IR spectrum of Co2(CO)8 observed on varying the temperature. The reaction paths for the interconversions of the stable isomers have also been investigated. The optimized geometry of HCo(CO)4 agrees well with the experimental structure. The Cs symmetry found for the most stable isomer of HCo(CO)3 is of much interest, serves to explain the formation of the complex with olefins.  相似文献   

9.
The Cp2Rh2(CO)n (n = 4, 3, 2, 1) derivatives have been examined by density functional theory using the BP86 and MPW1PW91 functionals. The known tricarbonyl Cp2Rh2(CO)3 is predicted to have a singly bridged structure with a predicted Rh–Rh single bond distance of ~2.70 Å in close agreement with the experimental value of 2.68 Å, determined by X-ray crystallography. In contrast to the cobalt analog, no evidence for a triply bridged Cp2Rh2(μ-CO)3 structure was found. The known dicarbonyl Cp2Rh2(CO)2 is predicted to have a doubly bridged structure with a predicted RhRh double bond distance of 2.58 Å in close agreement with the experimental RhRh double bond distance of 2.564 Å, found by X-ray crystallography for the permethylated derivative (η5-Me5C5)2Rh2(μ-CO)2. The monocarbonyl Cp2Rh2(CO) is predicted to have a four-electron donor bridging carbonyl group with a Rh–O distance of ~2.5 Å and a RhRh double bond distance of ~2.54 Å. This differs from Cp2Co2(CO) which was previously predicted to have only a two-electron donor bridging carbonyl group with a long Co?O distance and a short CoCo distance of ~2.0 Å suggesting a formal triple bond. For Cp2Rh2(CO)4 doubly bridged trans and cis isomers were found within ~1.0 kcal/mol in energy with non-bonding Rh?Rh distances of ~3.2 Å. However, these Cp2Rh2(CO)4 isomers are predicted to be unstable with respect both to CO loss to give Cp2Rh2(CO)3 and to fragmentation into two CpRh(CO)2 units.  相似文献   

10.
The binuclear complex [Rh2(μ-S(CH2)2NMe2)2(cod)2] 1 (cod=1,5-cyclooctadiene) was anchored to a sulfonic exchange resin through the residual amine groups. The reaction of the immobilized complex with CO and PPh3 yielded the catalytically active complex [Rh2(μ-S(CH2)2NHMe2)2(CO)2(PPh3)2]2+ supported in the polymer matrix. When methanol was used as solvent, the metal complex loaded cationic resin behaved as a multifunctional catalyst, since it was active in the hydroformylation of styrene and the subsequent formation of the acetals, directly rendering 1,1-dimethoxy-2-phenylpropane in 85% selectivity. Furthermore, the immobilized catalyst can be separated from the reaction mixture and recycled. A homogeneous model of the supported catalyst was generated by reacting complex 1 with HTsO, PPh3, and CO. Thus, the methanol soluble complex [Rh2(μ-S(CH2)2NHMe2)2(CO)2(PPh3)2](TsO)2 was also found to be active in the hydroformylation of styrene yielding identical selectivity in the branched isomer to that of the immobilized catalyst, although the latter is much slower (20-fold) than the homogeneous catalyst.  相似文献   

11.
The preparation and characterization by elemental analysis, electronic and infrared spectroscopy are reported for the monomeric complexes cis-(amine)-M(CO)2Cl (M = Ir or Rh, amine = 1,8-naphthyridine or pyridazine; M = Ir, amine = o-phenylenediamine) and the binuclear species (1,8-naphthyridine)Rh2(CO)4Cl2, (1,8-naphthyridine)IrRh(CO)4Cl2, (pyrazine)Rh2(CO)4Cl2 and (1,3-di-4-pyridylpropane)Rh2(CO)4Cl2.  相似文献   

12.
Decarbonylation of the unsupported clusters Rh4(CO)12, Rh2Co2(CO)12, RhCo3(CO)12 and Co4(CO)12 in a stream of hydrogen has been investigated by temperature programmed decomposition. Kinetic parameters for the thermal decomposition are presented, and the stabilities of the clusters are discussed. The profile for evolution of CO from Rh4(CO)12 indicates that a stable intermediate is formed. In all four cases methane is formed stepwise until most of the CO groups are evolved.  相似文献   

13.
The mixed-metal vinylidene clusters HFe3Rh(CO)11(CCHR) (R = H, C6H5) have been synthesized via the reaction of [HFe3(CO)3CCHR][P(C6H5)4] with [RhCl(CO)2]2 in the presence of a thallium salt. The reaction initially gives the [Fe3Rh(CO)11]CCHR][P(C6H5)4] cluster which leads to the final products by protonation. Spectroscopic data indicate a μ42 mode of bonding for the vinylidene ligand. A structure with a Fe3Rh core in a butterfly configuration and in which the rhodium atom occupy a wing-tip site is proposed. The catalytic activity of HFe3Rh(CO)11(CCH(C6H5)) (80% yield) has been checked in hydroformylation and hydrogenation. In hydroformylation the cluster shows the same activity as Rh4(CO)12, whereas in hydrogenation the mixed-metal system shows specific activity; isomerization of 1-heptene to cis and trans 2-heptene takes place with no more than 14% heptane formation. The cluster is broken down during the catalysis, and some H3Fe3CO)93-CCH2(C6H5)) is formed. The latter cluster is not an active catalyst, and under the same conditions use of Rh4(CO)12 results mainly in hydrogenation of 1-heptene. These observations suggest that the active species is a mixed iron-rhodium system.  相似文献   

14.
In the hydroformylation of ethylene with approximately equimolar H2/D2 mixtures and Rh4(CO)12 or Co2(CO)8 as the catalyst precursor about 50% of propionaldehyde-d1 was formed. The propionaldehyde-d0/d2 ratio was ~ 3 for rhodium and ~ 2.6 for the cobalt catalyst. On the basis of the results and assuming that there is no rapid M(H)2/M(D)2 scrambling, activation of hydrogen through M(H)2 or M(H)2(olefin) complexes can be excluded.  相似文献   

15.
A ready intermolecular ligand exchange process occurs when solutions of Co2Rh2(CO)12 and Co2Rh2(CO)8(PF3)4 are mixed at room temperature.  相似文献   

16.
The two catalyst precursors [Rh2(μ-penicillamine)2(CO)4][OTf]2 and [Rh2(μ-cysteine)2(CO)4][OTf]2 in the presence of 4 equivalents of P(OPh)3 in triethyl orthoformate as solvent and reactant, permit the low pressure hydroformylation of various alkenes into the corresponding acetals. Apart from a few low-yield by-products resulting from isomerization of the substrates, the carbonylated products obtained directly and exclusively are acetals.  相似文献   

17.
Asymmetrical cyclic phosphite and phosphinite ligands of a novel type bearing either trifluoromethyl or pentafluorophenyl group were synthesized using >PCl or >PN< species and racemic fluorinated alcohols. The P-ligands were converted to complexes of RhIII(L)(Cp)Cl2 type (where L = phosphite or phosphinite) and, in two instances, their stereostructures were evaluated by X-ray analysis. These complexes along with in situ systems, formed from Rh(CO)2(acac) precursor and the corresponding ligand, were tested in the hydroformylation of styrene. Both systems provided excellent hydroformylation activities at 100 °C. Using the RhI in situ systems, moderate and high regioselectivities towards the branched aldehyde (2-phenyl-propanal) were obtained at 100 and 40 °C, respectively.  相似文献   

18.
Rhodium trichloride supported on Ti-hexagonal mesoporous silica (Ti-HMS), via a bipyridyl group, is an efficient catalyst for the hydroformylation of olefins at 120 °C and 40.8 atm of CO/H2 (CO/H2=2/1). The catalyst is selective leading to high ratios of linear or branched aldehydes from functionalized olefins, and high activity in the case of propene which gave a turnover frequency of 6209 mol/mol(Rh)/h.  相似文献   

19.
Chemisorption of Rh4(CO)12 on to a highly divided silica (Aerosil “0” from Degussa), Leads to the transformation: 3 Rh4(CO)12 → 2 Rh6(CO)16 + 4 CO. Such an easy rearrangement of the cluster cage implies mobility of zerovalent rhodium carbonyl fragments on the surface. Carbon monoxide is a very efficient inhibitor of this reaction, and Rh4(CO)12 is stable as such on silica under a CO atmosphere. Both Rh4(CO)12 and Rh6(CO)16 are easily decomposed to small metal particles of higher nuclearity under a water atmosphere and to rhodium(I) dicarbonyl species under oxygen. From the RhI(CO)2 species it is possible to regenate first Rh4(CO)12 and then Rh6(CO)16 by treatment with CO (Pco ? 200 mm Hg) and H2O (PH2O ? 18 mm Hg). The reduction of RhI(CO)2 surface species by water requires a nucleophilic attack to produce an hypothetical [Rh(CO)n]m species which can polymerize to small Rh4 or Rh6 clusters in the presence of CO but which in the absence of CO lead to metal particles of higher nuclearity. Similar results are obtained on alumina.  相似文献   

20.
Rh4(CO)12 anchored on γ-Al2O3 (Rh4(CO)12/Al2O3) has been studied as a catalyst for the hydrogenation of 1,3-trans-pentadiene. Under mild conditions (1 atm H2 and temperatures between 60°C and 80°C) hydrogenation occurs at only one of the double bonds of the diene, and analysis of the products shows that the terminal double bond is preferentially hydrogenated. Hydrogenation of the second double bond of the conjugated diene occurring only after all the 1,3-trans-pentadiene has been consumed. In this respect Rh4(CO)12/Al2O3 behaves like toluene solutions of Rh4(CO)12. Anchoring of Rh4(CO)12 on the solid support gives a catalyst which is less active but more stable than toluene solutions of Rh4(CO)12. The effects of CO and of triphenylphosphine on catalytic activity and on specificity of Rh4(CO)12/Al2O3 have also been investigated and both shown to cause a reduction of the rate of hydrogenation of 1,3-trans-pentadiene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号