首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The rhenium(I) enolate complex fac-(CO)3(P(CH3)3)2Re(OC(CH3)C5H4) (4 was prepared from the reaction of (η5-C5H4C(O)CH3)Re(CO)3 (3) with P(CH3)3. Compound 4 was characterized structurally in the solid state by X-ray crystallography and in solution by IR and 1H, 13C, and 31P NMR spectroscopy. Photolysis of 4 at 337 nm in CH2Cl2 solution cleaves the ReO bond: smooth conversionto fac-(CO)3(P(CH3)3)2ReCl (5) is observed with a quantum yield of 0.04.  相似文献   

2.
The eighteen new μ-alkylidene ruthenium complexes 5a–r and 5t are very easily and cleanly obtained along the diazoalkane or the hydrazone routes that involve treatment of the dinuclear, metal-metal doubly bonded precursor compound [(η5-C5H5)Ru(μ-NO)]2 (3) either with the diazoalkanes oxidizing agent (e.g., MnO2), with the respective hydrazones. Similarly, sulfur dioxide adds cleanly to the RuRu double bond of 3, thus giving the complex (μ-SO2)[(η5-C5H5)Ru(NO)]2 (5s). Regardless of the nature of the carbene bridge ligands, the dimetallacyclopropanes exhibit, in contrast to their iron analogues, exclusively terminal nitrosyl ligands. cis/trans-Isomerism with predominating amounts of the trans-isomers is observed for the derivatives that display unsymmetrically substituted carbene bridges.Treatment of the μ-methylene- and μ-ethylidene complexes (μ-CH2)[(η5-C5H5)Ru(NO)]2 (5a) and (μ-CHCH3)[(η5-C tetrafluoroboric acid or trifluoromethanesulfonic acid in diethyl ether yields, at ambient temperature, quantitatively the ionic complexes 6a,b and 7a,b, respectively, which were shown by 1H NMR spectroscopy to contain metal-metal bridging hydrogen functionalities. The reaction of hydrogen bromide with 5a under the same conditions gives the neutral bromo(methyl) complex 6d. This latter compound results from the isolable ionic intermediate of composition [(μ-CH2)(μ-H){(η5C5H5)Ru(NO)}2]+Br? (6c), which reaction stems from the nucleophilicity of the halide ion present in 6c.  相似文献   

3.
The mononuclear complexes [(η5-C5Me5)IrCl(L1)] (1), [(η5-C5Me5)RhCl(L1)] (2), [(η6-p-PriC6H4Me)RuCl(L1)] (3) and [(η6-C6Me6)RuCl(L1)] (4) have been synthesised from pyrazine-2-carboxylic acid (HL1) and the corresponding complexes [{(η5-C5Me5)IrCl2}2], [{(η5-C5Me5)RhCl2}2], [{(η6-p-PriC6H4Me)RuCl2}2], and [{(η6-C6Me6)RuCl2}2], respectively. The related dinuclear complexes [{(η5-C5Me5)IrCl}2(μ-L2)] (5), [{(η5-C5Me5)RhCl}2(μ-L2)] (6), [{(η6-p-PriC6H4Me)RuCl}2(μ-L2)] (7) and [{(η6-C6Me6)RuCl}2(μ-L2)] (8) have been obtained in a similar manner from pyrazine-2,5-dicarboxylic acid (H2L2). Compounds isomeric to the latter series, [{(η5-C5Me5)IrCl}2(μ-L3)] (9), [{(η5-C5Me5)RhCl}2(μ-L3)] (10), [{(p-PriC6H4Me)RuCl}2(μ-L3)] (11) and [{(η6-C6Me6)RuCl}2(μ-L3)] (12), have been prepared by using pyrazine-2,3-dicarboxylic acid (H2L3) instead of H2L2. The molecular structures of 2 and 3, determined by X-ray diffraction analysis, show the pyrazine-2-carboxylato moiety to act as an N,O-chelating ligand, while the structure analyses of 5-7, confirm that the pyrazine-2,5-dicarboxylato unit bridges two metal centres. The electrochemical behaviour of selected representatives has been studied by voltammetric techniques.  相似文献   

4.
Ruthenium complexes [(η5-C5H5)Ru(κ1-P-PPh2Py)(PPh3)Cl] (1) and [(η5-C5H5)Ru(κ2-P-N-PPh2Py)(PPh3)]+ (1a) containing diphenyl-2-pyridylphosphine (PPh2Py) are reported. Coordinated PPh2Py in the complex [(η5-C5H5)Ru(κ1-P-PPh2Py)(PPh3)Cl] (1) exhibits monodentate behavior. In presence of NH4PF6 in methanol at room temperature it afforded chelated complex [(η5-C5H5)Ru(κ2-P,N-PPh2Py)(PPh3)]+ (1a). Further, 1 reacted with various species viz., CH3CN, NaCN, NH4SCN and NaN3 to afford cationic and neutral complexes [(η5-C5H5)Ru(κ1-P-PPh2Py)(PPh3)L]+ and [(η5-C5H5)Ru(κ1-P-PPh2Py)(PPh3)L] [L = CH3CN (1b); CN (1c); N3 (1d) and SCN (1e)] and it’s reaction with N,N-donor chelating ligands dimethylglyoxime (H2dmg) and 1,2-phenylenediamine (pda) gave cationic complexes [(η5-C5H5)Ru(κ1-P-PPh2Py)(κ2-N-N)]PF6 [κ2-N-N = dmg (1f) and pda (1g)]. The complexes 1-1g have been characterized by physicochemical techniques and crystal structures of 1, 1a, 1c, 1e and 1f have been determined by single crystal X-ray analyses. Catalytic potential of the complex 1 has been evaluated in water under aerobic conditions. It was observed that the complex 1 selectively catalyzes reduction of aldehyde into alcohol.  相似文献   

5.
The mononuclear cations [(η5-C5Me5)RhCl(bpym)]+ (1), [(η5-C5Me5)IrCl(bpym)]+ (2), [(η6-p-PriC6H4Me)RuCl(bpym)]+ (3) and [(η6-C6Me6)RuCl(bpym)]+ (4) as well as the dinuclear dications [{(η5-C5Me5)RhCl}2(bpym)]2+ (5), [{(η5-C5Me5)IrCl}2(bpym)]2+ (6), [{(η6-p-PriC6H4Me)RuCl}2(bpym)]2+ (7) and [{(η6-C6Me6)RuCl}2(bpym)]2+ (8) have been synthesised from 2,2′-bipyrimidine (bpym) and the corresponding chloro complexes [(η5-C5Me5)RhCl2]2, [(η5-C5Me5)IrCl2]2, [(η6-PriC6H4Me)RuCl2]2 and [(η6-C6Me6)RuCl2]2, respectively. The X-ray crystal structure analyses of [3][PF6], [5][PF6]2, [6][CF3SO3]2 and [7][PF6]2 reveal a typical piano-stool geometry around the metal centres; in the dinuclear complexes the chloro ligands attached to the two metal centres are found to be, with respect to each other, cis oriented for 5 and 6 but trans for 7. The electrochemical behaviour of 1-8 has been studied by voltammetric methods. In addition, the catalytic potential of 1-8 for transfer hydrogenation reactions in aqueous solution has been evaluated: All complexes catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide. For both the mononuclear and dinuclear series the best results were obtained (50 °C, pH 4) with rhodium complexes, giving turnover frequencies of 10.5 h−1 for 1 and 19 h−1 for 5.  相似文献   

6.
《Tetrahedron: Asymmetry》2000,11(13):2765-2779
The ligands 6-[(diphenylphosphanyl)methoxy]-4,8-di-tert-butyl-2,10-dimethoxy-5,7-dioxa-6-phosphadibenzo[a,c]cycloheptene, 1, (S)-4-[(diphenylphosphanyl)methoxy]-3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4a′]dinaphthalene, (S)-2, and (S)-4-[(diphenylphosphanyl)methoxy]-2,6-bis-trimethylsilanyl-3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a′]dinaphthalene, (S)-3, (S)-2-(3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a′]dinaphthalen-4-yloxymethyl)pyridine, (S)-4, and (S)-2-(3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a′]dinaphthalen-4-yloxy)pyridine, (S)-5, have been easily prepared.The cationic complexes [Pd(η3-C3H5)(L-L′)]CF3SO3 (L–L′=1–(S)-5) and [Pd(η3-PhCHCHCHPh)(L–L′)]CF3SO3 (L–L′=(S)-2–(S)-4) were synthesized by conventional methods starting from the complexes [Pd(η3-C3H5)Cl]2 and [Pd(η3-PhCHCHCHPh)Cl]2, respectively. The behavior in solution of all the π-allyl- and π-phenylallyl-(L–L′)palladium derivatives 614 was studied by 1H, 31P{1H}, 13C{1H} NMR and 2D-NOESY spectroscopy. As concerns the ligands (S)-4 and (S)-5, a satisfactory analysis of the structures in solution was possible only for palladium–allyl complexes [Pd(η3-C3H5)((S)-4)]CF3SO3, 11, and [Pd(η3-C3H5)((S)-5)]CF3SO3, 12, since the corresponding species [Pd(η3-PhCHCHCHPh)((S)-4)]CF3SO3, 13, and [Pd(η3-PhCHCHCHPh)((S)-5)]CF3SO3, 14, revealed low stability in solution for a long time. The new ligands (S)-2–(S)-5 were tested in the palladium-catalyzed enantioselective substitution of (1,3-diphenyl-1,2-propenyl)acetate by dimethylmalonate. The precatalyst [Pd(η3-C3H5)((S)-2)]CF3SO3 afforded the allyl substituted product in good yield (95%) and acceptable enantioselectivities (71% e.e. in the S form). A similar result was achieved with the precatalyst [Pd(η3-C3H5)((S)-3)]CF3SO3. The nucleophilic attack of the malonate occurred preferentially at allylic carbon far from the binaphthalene moiety, namely trans to the phosphite group. When the complexes containing ligands (S)-4 and (S)-5 were used as precatalysts, the product was obtained as a racemic mixture in high yield. The number of the configurational isomers of the Pd-allyl intermediates present in solution in the allylic alkylation and the relative concentrations are considered a determining factor for the enantioselectivity of the process.  相似文献   

7.
《Tetrahedron》1986,42(6):1763-1768
(-)-(1S,3S,5R,6S,8R,10R)-Trishomocubanethanoic acid (5) of known absolute configuration and absolute rotation was converted into (+)-(1S,3S,5S,6S,8R,10R)-2-bromoethynyl-D3-trishomocubane (27) of C3 symmetry. 1,3,5,7-Tetraethynyladamantane (22), with Td symmetry, was prepared from 1,3,5,7-tetrakis(hydroxymethyl)adamantane(13). Coupling of the C3-component 27 with the Td component 22 was successfully accomplished by Chodkiewicz and Cadiot's procedure providing (+)-1,3,5,7-tetrakis[2-(1S,3S,5R,6S,8R,10R)-D3-trishomocubanylbuta-1,3-diynyl]adamantane(4) whose highest attainable static and time-averaged dynamic symmetry are T and (C3)4 XXX T,respectively.  相似文献   

8.
A novel 5-Acetoxy-1-(6-chloropyridin-2-yl)-1H-pyrazole-3-carboxylic acid methyl ester derivatives Htcdodtta (1), and it’s five complexes, [Cu2(L1)2]·(CH3CN) (2), [Cu2(L2)1.63(L3)0.37]·(CH3OH)0.5 (3), [Cu2(L3)(L4)]·(C2H5OH)0.5·(CH3OH)0.5 (4), [Cu2(L4)(L5)]·(H2O) (5) and [Cu2(L1)1.18(L2)0.82] (6) have been synthesized. The Htcdodtta, HL1-HL5 were formed in-situ reaction. HL1-HL5 are homologues which possess two chiral carbons. Compounds 16 were characterized using single-crystal X-ray diffraction, IR, and elemental analysis. Compounds 26 are dinuclear copper complexes. The in vitro cytotoxicities of compounds 14 against a variety of cell lines were evaluated by MTT assays. Hela cancer cell apoptosis assay of 1 and 2 were examined by flow cytometry. The cell apoptosis in NP69, A549, Capan-2, Hela, HepG2, and HUVECs cell lines induced by compound 2 was further affirmed by cellular morphology observations.  相似文献   

9.
The set of starting tri-, di- and monoorganotin(IV) halides containing N,C,N-chelating ligand (LNCN = {1,3-[(CH3)2NCH2]2C6H3}) has been prepared (1-5) and two compounds structurally characterized ([LNCNPh2Sn]+I3 (1c), LNCNSnBr3 (5)) in the solid state. These compounds were reacted with KF with 18-crown-6, NH4F or LCNnBu2SnF to give derivatives containing fluorine atom(s). Triorganotin(IV) fluorides LNCNMe2SnF (2a) and LNCNnBu2SnF (3a) revealed monomeric structural arrangement with covalent Sn-F bond both in the coordinating and non-coordinating solvents, except the behaviour of 3a that was ionized in the methanol solution at low temperature. The products of fluorination of LNCNSnPhCl2 (4) and 5 were described by NMR in solution as the ionic hypervalent fluorostannates or the oligomeric species reacting with chloroform, methanol or moisture to zwitterionic monomeric stannate LNCN(H)+SnF4 (5c), which was confirmed by XRD analysis in the solid state.  相似文献   

10.
The first step in the reaction of trimethylsilylmethylene-dimethylsulfurane 1 (prepared from (CH3)3SiCH2S?(CH3)2ī with 1 equivalent (CH3)3COK) with carbonyl compounds (R1)(R2)CHCOCH2R32 leads Peterson-like way to the non-isolable vinylsulfoniumdimethylsilanolate-intermediate B or its recombined product A. Depending on the reaction conditions and the nature of the substituents R1, R2 and R3 there exist five different pathways to the end products 37. Frequently one can find an elimination of trimethylsilanole followed by a 2,3-sigmatropic rearrangement of an allyl-substituted methylene - sulfurane - intermediate to the 2,3,3 - trialkyl - 5 -thiahex -1 - enes 3 [CH3SCH2C(R1)(R2)C(CH2R3)=CH2]. Sometimes this formation of 3 is suppressed by means of two equivalents of (CH3)3COK. In this case demethylation of the assumed precursor B arises yielding the E,Z-vinylsulfides 4 [CH3SCH=C(CH2R3)(CHR1R2)], whereas the formation of the methylthiomethyl-dialkylcar-binoles 5 [CH3SCH2C(OH)(CH2R3)(CHR1R2)] can be explained by the demethylation of the precursor A. Treatment with five equivalents of (CH3)3COK yields in one case the 2,2,5,7 - tetramethyl - 5 - hydroxy - 3 - oxaoctane (7a) as
a consequence of a extrusion of dimethylsulfide. Frequently also epoxides of type 6 [CH2-C(CH2R3)(CHR1R2)] can be isolated. Their formation is compared with the well-known preparation of epoxides by the dimethylsulfonium-methylide on the one and dimethylsulfoxoniummethylide on the other side.  相似文献   

11.
The mononuclear cationic complexes [(η6-C6H6)RuCl(L)]+ (1), [(η6-p-iPrC6H4Me)RuCl(L)]+ (2), [(η5-C5H5)Ru(PPh3)(L)]+ (3), [(η5-C5Me5)Ru(PPh3)(L)]+ (4), [(η5-C5Me5)RhCl(L)]+ (5), [(η5-C5Me5)IrCl(L)]+ (6) as well as the dinuclear dicationic complexes [{(η6-C6H6)RuCl}2(L)]2+ (7), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (8), [{(η5-C5H5)Ru(PPh3)}2(L)]2+ (9), [{(η5-C5Me5)Ru(PPh3)}2(L)]2+ (10), [{(η5-C5Me5)RhCl}2(L)]2+ (11) and [{(η5-C5Me5)IrCl}2(L)]2+ (12) have been synthesized from 4,4′-bis(2-pyridyl-4-thiazole) (L) and the corresponding complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-p-iPrC6H4Me)Ru(μ-Cl)Cl]2, [(η5-C5H5)Ru(PPh3)2Cl)], [(η5-C5Me5)Ru(PPh3)2Cl], [(η5-C5Me5)Rh(μ-Cl)Cl]2 and [(η5-C5Me5)Ir(μ-Cl)Cl]2, respectively. All complexes were isolated as hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV-vis spectroscopy. The X-ray crystal structure analyses of [3]PF6, [5]PF6, [8](PF6)2 and [12](PF6)2 reveal a typical piano-stool geometry around the metal centers with a five-membered metallo-cycle in which 4,4′-bis(2-pyridyl-4-thiazole) acts as a N,N′-chelating ligand.  相似文献   

12.
The intense purple colored bi- and trimetallic complexes {Ti}(CH2SiMe3)[CC(η6-C6H5)Cr(CO)3] (3) ({Ti}=(η5-C5H5)2Ti) and [Ti][CC(η6-C6H5)Cr(CO)3]2 (5) {[Ti]=(η5-C5H4SiMe3)2Ti}, in which next to a Ti(IV) center a Cr(0) atom is present, are accessible by the reaction of Li[CC(η6-C6H5)Cr(CO)3] (2) with {Ti}(CH2SiMe3)Cl (1) or [Ti]Cl2 (4) in a 1:1 or 2:1 molar ratio. The chemical and electrochemical properties of 3, 5, {Ti}(CH2SiMe3)(CCFc) [Fc=(η5-C5H5)Fe(η5-C5H4)] and [Ti][(CC)nMc][(CC)mM′c] [n, m=1, 2; n=m; nm; Mc=(η5-C5H5)Fe(η5-C5H4); M′c=(η5-C5H5)Ru(η5-C5H4); Mc=M′c; Mc≠M′c] will be comparatively discussed.  相似文献   

13.
The syntheses of group 4 metal complexes containing the picolyldicarbollyl ligand DcabPyH [nido-7-HNC5H4(CH2)-8-R-7,8-C2B9H10] (2) are reported. New types of constrained geometry group 4 metal complexes (DcabPy)MCl2, [{(η5-RC2B9H9)(CH2)(η1-NC5H4)}MCl2] (M = Ti, 3; Zr, 4; R = H, a; Me, b), were prepared by the reaction of 2 with M(NMe2)2Cl2 (M = Ti, Zr). The reaction of 2 with M(NMe2)4 in toluene afforded (DcabPy)M(NMe2)2, [{(η5-RC2B9H9)(CH2)(η1-NC5H4)}M(NMe2)2] (M = Ti, 5; Zr, 6; R = H, a; Me, b), which readily reacted with Me3SiCl to yield the corresponding chloride complexes (DcabPy)MCl2 (M = Ti, 3; Zr, 4; R = H, a; Me, b). The structures of the diamido complexes (DcabPy)M(NMe2)2 (M = Ti, 5; Zr, 6) were established by X-ray diffraction studies of 5a, 5b, and 6a, which verified an η51-bonding mode derived from the dicarbollylamino ligand. Related constrained geometry catalyst CGC-type alkoxy titanium complexes, (DcabPy)Ti(OiPr)2 (7), were synthesized by the reaction of 2 with Ti(OiPr)4. Sterically less demanding phenols such as 2-Me-C6H4OH replaced the coordinated amido ligands on (DcabPy)Ti(NMe2)2 (5a) to yield aryloxy stabilized CGC complexes (DcabPy)Ti(OPhMe)2(PhMe  =  2- Me-C6H4, 8). NMR spectral data suggested that an intramolecular Ti-N coordination was intact in solution, resulting in a stable piano-stool structure with two aryloxy ligands residing in two of the leg positions. The aryloxy coordinations were further confirmed by single crystal X-ray diffraction studies on complexes (DcabPy)Ti(OPhMe)2 (8).  相似文献   

14.
Reactions of (tBuHN)3PNSiMe3 (1) with the alkyl-metal reagents dimethylzinc, trimethylaluminum and di-n-butylmagnesium yield the monodeprotonated complexes [MeZn{(NtBu)(NSiMe3)P(NHtBu)2}] (2), [Me2Al{(NtBu)(NSiMe3)P(NHtBu)2}] (3) and [Mg{(NtBu)(NSiMe3)P(NHtBu)2}2] (4), respectively. Attempts to further deprotonate complex 2 with n-butyllithium or di-n-butylmagnesium result in nucleophilic displacement of the methylzinc fragment by lithium or magnesium. The two remaining amino protons of 3 are removed by reaction with di-n-butylmagnesium to give a heterobimetallic complex in which the coordination sphere of magnesium is completed by two molecules of THF (5 · 2THF) or one molecule of TMEDA (5 · TMEDA). Reaction of complex 3 with 1 equiv. of n-butyllithium followed by treatment of the product with di-n-butylmagnesium yields the complex {Me2Al[(NtBu)(NSiMe3)P(NtBu)2]MgBu} Li · 4THF (6 · 4THF), the first example of a triply deprotonated complex of 1 containing three different metals. Reaction of complex 5 with iodine results in cleavage of an Al–Me group to give {MeIAl[(NtBu)(NSiMe3)P(NtBu)2Mg]} (7). Complexes 5 · 2THF, 5 · TMEDA, 6 · 4THF and 7 have been characterized in solution by multinuclear (1H, 13C, 31P and 7Li) NMR spectroscopy, while the solid-state structures of 2, 4 and 5 · 2THF have been determined by X-ray crystallography.  相似文献   

15.
The reaction of 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2a]pyrimidinyl potassium, [hpp]K+ (1), with dimethyldichlorosilane, diphenyldichlorosilane or cyclotetramethylenedichlorosilane (1,1-dichloro silolane) in THF resulted in the formation of the in solid-state unexpected diionic dimer λ4Si-[Me2SiCl(hpp)]2 (2) (76%), as well as λ5Si-Ph2SiCl(hpp) (3) (87%) and λ5Si-(CH2)4SiCl(hpp) (4) (28%). Compounds 3 and 4 are the first synthesised examples of four ring (–λ5Si–N–CN–) guanidine structures. 1H and 13C NMR show the compounds to have a symmetric guanidine unit in solution. 29Si NMR analysis shows the structures, in selected solvents, to be of λ5Si-type for 3 and to the major part for 2. Compound 4, on the other hand, is of ionic λ4Si-type. The syntheses and molecular structures of the compounds are discussed.  相似文献   

16.
The effects of catalyst structural variation on the activity and selectivity of titanocene-catalyzed pinacol coupling of cyclohexane carboxaldehyde by Mn/TMSCl have been evaluated. Complexes which have been tested include: Cp2TiCl2 (1), Cp2TiBr2 (2), (C5Me5)2TiCl2 (3), (1,3-t-Bu2C5H3)2TiCl2 (4), (1,3-t-Bu2C5H3)(Cp)TiCl2 (5), ansa-[(η5-tetrahydroindenyl)CH2CH25-tetrahydroindenyl)]TiCl2 (6), and ansa-[(η5-Cp)CH2CH25-fluorenyl)]TiCl2 (7). Cp2TiCl2 (1) is the most active (pre)catalyst for pinacol silylether (8a) formation, but Brintzinger's complex 6 provides the best dl/meso diastereoselectivity (5:1). Complexes 2, 4 and 7 slowly catalyze the predominant formation of the corresponding pinacol acetal 9a as a secondary product. Comparative stoichiometric reactions of benzaldehyde/Me3SiCl with [Cp2TiCl·MnCl2(THF)2·Cp2TiCl] (10) and [Cp2TiCl]2 (11) result in highly diastereoselective pinacol silylether formation with binuclear 11 (29:1), but primarily the production of pinacol acetal (9b) from trimetallic 10, suggesting a dominant role for the binuclear complex (or derived mononuclear species) in the catalytic systems employing Cp2TiCl2/M/TMSCl, contrary to previous suggestions.  相似文献   

17.
The reactivity of the mono(pentamethylcyclopentadienyl) divalent lanthanide tetraphenylborate complexes, (C5Me5)Ln(BPh4) (Ln = Sm, 1; Yb, 2), was investigated to determine how Ln2+ and (BPh4)1? reactivity would combine in these species. The (BPh4)1? ligand in (C5Me5)Yb(BPh4) can be displaced with KN(SiMe3)2 to form the heteroleptic divalent dimer, {(C5Me5)Yb[μ-N(SiMe3)2]}2 (3). Both 1 and 2 reduce phenazine to give the bis(pentamethylcyclopentadienyl) ligand redistribution products, [(C5Me5)2Ln]2(μ-C12H8N2). 2,2-Bipyridine is reduced by 1 to yield the ligand redistribution product, (C5Me5)2Sm(C10H8N2) (4), while 2 does not react with bipyridine. Tert-butyl chloride is reduced by 1 to form the trimetallic pentachloride complex [{(C5Me5)(THF)Sm}3(μ-Cl)5][BPh4] (6), in a reaction that appears to use the reductive capacity of both Sm2+ and (BPh4)1?.  相似文献   

18.
A novel iridium(I) complex bearing a chelate-coordinated pyridine-2-thiolate ligand [Ir(η2-SNC5H4)(PPh3)2] (2) was prepared by the reaction of iridium ethylene complex [IrCl(C2H4)(PPh3)2] (1) with lithium salt of pyridine-2-thiol (Li[SNC5H4]). On the treatment of iridium(I) complex 2 with chloroform, iridium(III) dichloro-complex [IrCl22-SNC5H4)(PPh3)2] (3) was formed. Reactions of complex 2 with methyldiphenylsilane, acetic acid, and p-tolylacetylene afforded iridium(III) hydride complexes [IrH(SiMePh2)(η2-SNC5H4)(PPh3)2] (4), [IrH(O2CCH3)(η2-SNC5H4)(PPh3)2] (5), and [IrH(CC(p-tolyl))(η2-SNC5H4)(PPh3)2] (6), respectively. Complex 2 catalyzed dimerization of terminal alkynes leading to enynes (7) with high E-selectivity via C-H bond activation.  相似文献   

19.
The keto-functionalised N-pyrrolyl phosphine ligand PPh2NC4H3{C(O)CH3-2} L1 reacts with [MoCl(CO)35-C5R5)] (R=H, Me) to give [MoCl(CO)2(L11P)(η5-C5R5)] (R=H 1a; Me 1b). The phosphine ligands PPh2CH2C(O)Ph (L2) and PPh2CH2C(O)NPh2 (L3) react with [MoCl(CO)35-C5R5)] in an analogous manner to give the compounds [MoCl(CO)2(L-κ1P)(η5-C5R5)] (L=L2, R=H 2a, Me 2b; L=L3, R=H 3a, Me 3b). Compounds 13 react with AgBF4 to give [Mo(CO)2(L-κ2P,O)(η5-C5R5)]BF4 (L=L1, R=H 4a, Me 4b; L=L2, R=H 5a, Me 5b; L=L3, R=H 6a, Me 6b) following displacement of chloride. The X-ray crystal structure of 4a revealed a lengthening of both Mo–P and CO bonds on co-ordination of the keto group. The lability of the co-ordinated keto or amido group has been assessed by addition of a range of phosphines to compounds 46. Compound 4a reacts with PMe3, PMe2Ph and PMePh2 to give [Mo(CO)2(L11P)(L)(η5-C5H5)]BF4 (L=PMe3 7a; PMe2Ph 7b; PMePh2 7c) but does not react with PPh3, 5a reacts with PMe2Ph, PMePh2 and PPh3 to give [Mo(CO)2(L21P)(L)(η5-C5H5)]BF4 (L=PMe2Ph 8b; PMePh2 8c; PPh3 8d), and 6a reacts with PMe3, PMe2Ph, PMePh2 and PPh3 to give [Mo(CO)2(L31P)(L)(η5-C5H5)]BF4 (L=PMe3 10a; PMe2Ph 10b; PMePh2 10c; PPh3 10d). No reaction was observed for the pentamethylcyclopentadienyl compounds 4b6b with PMe3, PMe2Ph, PMePh2 or PPh3. These results are consistent with the displacement of the co-ordinated oxygen atom being influenced by the steric properties of the P,O-ligand, with PPh3 displacing the keto group from L2 but not from the bulkier L1. In the reaction of [Mo(CO)2(L22P,O)(η5-C5H5)]BF4 (5a) with PMe3 the phosphine does not displace the keto group, instead it acts as a base, with the only observed molybdenum-containing product being the enolate compound [Mo(CO)2{PPh2CHC(O)Ph-κ2P,O}(η5-C5H5)] 9. Compound 9 can also be formed from the reaction of 2a with BuLi or NEt3, and a single crystal X-ray analysis has confirmed the enolate structure.  相似文献   

20.
《Solid State Sciences》2001,3(7):783-788
The synthesis and structural characterization of the complex [Ru(η6-C6H6)(η6-C6H4(CH3)COOCH3)] [BF4]2 (2) and of its precursor [Ru(η6-C6H4(CH3)COOCH3)Cl2]2 (1) are reported. Compound (2) has been characterized in two polymorphic modifications (2a and 2b) and the molecular organization in the solid state has been investigated. The complex [Ru(η5-C5H5)(η6-C6H5OH)][PF6] (3) has also been investigated; it has been shown to possess a disorder similar to that observed in the high temperature phase of related systems such as [Ru(η5-C5H5)(η6-C6H6)][PF6].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号