首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Spontaneous Raman spectra in the BaWO4 were measured in the temperature range from 4 K to 280 K, and the temperature dependence of the linewidth of the Ag (191 cm−1) Raman mode was analyzed using the lattice dynamical perturbative approach and one-phonon density of states (PDOS). The linewidth slope for the 191 cm−1 peak for an external mode is 7.2 times larger than that for the 926 cm−1 peak for a breathing mode. The different behaviors of these two modes in the case of temperature broadening could be attributed to the large energy band gap in the one-phonon density of states (PDOS) resulting in different anharmonic interactions. The origin may be that the ratio of up-conversion TDOS to down-conversion TDOS for Eg mode (191 cm−1) is more than that for Ag (926 cm−1). The peak of the Eg mode (191 cm−1) is attributed to the coupling mode both a rotation of the Barium and an out-of-phase rotation of the oxygen in xy plane as a librational mode.  相似文献   

2.
The assignment of the absorption spectra of 1,4-benzocyclooctenedione (1) is reported by measuring the circular dichroism spectra of the β-cyclodextrin complex with 1. It is concluded from the signs of the circular dichroism bands that the first (16.6 × 103−27.4 × 103 cm−1) absorption band is composed of two electronic transitions having perpendicular polarizations with respect to the long axis of 1, the second (27.4 × 103−35.8 × 103 cm−1) absorption band has the transition dipole moment parallel to the long axis of 1 and the third (35.8 × 103−44.3 × 103 cm−1) absorption band is composed of two electronic transitions having perpendicular and parallel polarizations with respect to the long axis of 1.  相似文献   

3.
The f.t.i.r. and Raman spectra of triphenylphosphine, triphenylarsine, triphenylstibine, and dibenzylsulphide in the solid state at ca 80 K have been recorded over the ranges 3500-40 cm−1 (infra-red, 1 cm−1 resolution) and 1650-30 cm−1 (Raman, 2 cm−1 resolution). The data, particularly those in the low wavenumber region, are more extensive, more complete, and of higher quality than those obtained in previous studies. Detailed band assignments are given.  相似文献   

4.
Vapor-phase infrared characteristic frequencies of ketones and aldehydes have been studied. The CO stretching vibrations in vapor phase have higher frequencies than those in condensed phase. The shifts are about 20 cm−1 for ketones and about 10 cm−1 for aldehydes. Both ketone and aldehyde have an absorption band at the range 1300–1100 cm−1, although their intensities are very different. This band was assigned to the CC stretching vibration of C(CO)unit.  相似文献   

5.
The structures and force field of 1,3,5,7-cyclooctatetraene (COT) have been studied using ab initio theory at the SCF level with the 4-21G basis set. The quadratic force field of the D2d structure obtained by systematic scaling of the ab initio force constants successfully reproduces the observed frequencies of COT and COT-d8 with a mean deviation of less than 10 cm−1 for non-CH stretching modes. On the basis of the calculated results, assignments of the fundamental vibrations are examined. The normal mode υ5 is reassigned to a weak band at 758 cm−1 in the Raman spectrum of COT and to a weak band at 591 cm−1 in the Raman spectrum of COT-d8. The calculations favor the assignment of υ26 given by Lippincott et al. [J. Am. Chem. Soc. 73, 3370 (1951)] over the revised assignment of Perec [Spectrochim. Acta 47A, 799 (1991)]. The calculations also furnish reliable prediction for the inactive A2 fundamentals of COT and COT-d8. The fundamental frequencies and IR and Raman intensities of 13CC7H8, which constitutes about 9% of COT in natural abundance, are also calculated. Only ν10 (calculated at 908 cm−1) of the formal inactive A2 modes has appreciable Raman intensity (0.23 Å4/amu). A spectral feature due to this fundametal is identified in the liquid Raman spectrum of Tabacik and Blaise [C. R. Acad. Sci. Ser. II 303, 539 (1986)] as a weak peak at 908 cm−1.  相似文献   

6.
The infrared absorption intensities of the chlorofluorocarbons C2ClxFy, (x + y = 6); the hydrofluorocarbons C2HxFyH (x + y = 6); and a number of hydrochlorofluorocarbons, including some members of the propane series, have been measured. Absorption intensities have been obtained by integration over specified ranges of frequencies. The ranges used include the atmospheric window (1250t-833 cm−1), 3500-450 cm−1, 1300-700 cm−1, and those for selected individual absorption bands. Comparisons of the results have been made with published work where available, and attention is drawn to possible sources of error in the measurement of band areas. The spectra of the halopropanes have been included for the range 3500-150 cm−1. A preliminary study has been made of the relation between the number of fluorine atoms in the molecule and the intensity of absorption of the CF stretching vibrations.  相似文献   

7.
The absorption spectrum of 16O3 has been recorded between 6030 and 6130 cm−1 by Fourier Transform Spectroscopy (GSMA, Reims) and cw-cavity ringdown spectroscopy (LSP, Grenoble). The two new bands 3ν1+3ν3 and 2ν2+5ν3 centered at 6063.923 and 6124.304 cm−1, respectively are observed and analyzed. Rovibrational transitions with J and Ka values up to 40 and 10, respectively, could be assigned. The rovibrational fitting of the observed energy levels shows that some rotational levels of the (303) and (025) bright states are perturbed by interaction with the (232), (510) and (124) dark states. The observed energy levels could be reproduced with a rms deviation of 5×10−3 cm−1 using a global analysis based on an effective Hamiltonian including the five interacting states. The energy values of the three dark vibrational states provided by the fit are found in good agreement with theoretical predictions.The parameters of the resulting effective Hamiltonian and of the transition moment operator retrieved from the measured absolute line intensities allowed calculating a complete line list of 2035 transitions, available as Supplementary Material. The integrated band strengths are estimated to be 1.22×10−24 and 3.15×10−24 cm−1/(mol cm−2) at 296 K for the 3ν1+3ν3 and 2ν2+5ν3 bands, respectively. A realistic error for these band strengths is 15% (see text).  相似文献   

8.
《Chemical physics letters》1986,124(4):382-390
Spectroscopic properties for various isotopomers of HCNH+ were calculated by SCEP CEPA using a basis set of 80 contracted GTOs. The equilibrium bond lengths are predicted to be r1e(CH) = 1.0785, Re(CN) = 1.1346, and r2e(NH) = 1.0116 Å. Anharmonic stretching frequencies and IR intensities were calculated. The strongest stretching band is ν2(H12C14ND+ ) at 2681 cm−1 with an absorption band strength of 1676 atm−1 cm−2 at 298 K. The equilibrium dipole moment of H12C14NH+ is −0.29±0.02 D.  相似文献   

9.
The Raman (3200—10cm−1) and infrared (3200—50 cm−1) spectra of gaseous and solid 1-chloro-2-methylpropane and 1-bromo-methylpropane, as well as the Raman spectra of the liquids, have been recorded and assigned. The gauche asymmetric torsion of the 1-chloro-2-methylpropane molecules has been observed at 110 cm−1 in the Raman spectrum of the gas. For the 1-bromo-2-methylpropane molecule, both the trans and gauche asymmetric torsions have been observed at 106.70 and 103.94 cm−1, respectively, along with three additional transitions for the gauche conformer. From these data, the asymmetric potential function for the bromide molecules to V1 = —493 ±16, V2 = 595 ± 18, and V3 = 2006 ± 6 cm−1 with the trans conformer being more stable than the gauche conformer by 44 ± 20 cm−1. The trans form is found experimentally to be more stable in the liquid phase by 30 ± 14 cm−1 (83 ± 40 cal mol−1). From the relative intensities, in the Raman spectra, of the CCl stretches measured as a function of temperature, the gauche conformer of the chloride molecules to be 167 ± 71 cm−1 (479 ± 203 cal mol−1) more stable than the trans conformer in the gas phase, and 73 ± 10 cm−1 (208 ± 29 cal mol−1) more stable in the liquid phase. The methyl torsions for the gauche and trans conformers of both molecules are tentatively assigned in the gas phase and the barriers have been calculated. The results of this study are compared with previous studies on these molecules.  相似文献   

10.
《Polyhedron》1987,6(6):1439-1443
The title compound was prepared by prolonged reaction of Os2(CH3COO)4Cl2 with Hfhp (Hfhp = 6-fluoro-2-hydroxypyridine) in refluxing toluene in the presence of LiCl. The product, Os2(fhp)4Cl (1), is a result of ligand displacement with a concomitant core reduction of Os26+ to Os25+. Crystals were grown by slow diffusion of hexane into a dichloromethane solution of 1. Crystallographic data are as follows: tetragonal crystal system, space group I4mm (No. 107), a = b = 11.000(3) Å, c = 13.142(2) Å, V= 1590(1) Å3, Z = 2. The molecule possesses crystallographic 4mm symmetry, with the OsOs bonds lying along the four-fold axes. The four fhp ligands are arranged in a polar fashion around the diosmium core, blocking one axial site. The second axial position is occupied by a chloride ion. The principal distances in 1 are: Os(1)Os(2) = 2.341(1) Å, Os(1)N = 2.027(12) Å, Os(2)O = 2.014(5) Å, Os(2)Cl = 2.487(7) Å. The title compound was also investigated by several physical methods. The electrochemistry as determined by cyclic voltammetry revealed two processes: a reversible, one-electron reduction at Eox = −0.63 V in dichloromethane and an irreversible oxidation at Eox = +0.95 V in dichloromethane vs Ag-AgCl at room temperature. The electronic spectrum shows strong bands at 413 nm (ε = 4290 M−1 cm−1), 309 nm (ε = 23,560 M−1 cm−1) and at 294 nm (ε = 26,500 M−1 cm−1) as well as shoulders at 334 and 261 nm.  相似文献   

11.
1064-nm-excited Fourier transform Raman spectra of bacteriochlorophyll-a (BChl) in various solid films and in chromatophores from a blue-green mutant of Rhodobacter sphaeroides have been obtained. The observed Raman spectra are free from high fluorescence backgrounds and sample degradation. The observed intensities seem to be enhanced because of a pre-resonant effect between the exciting radiation at 1064 nm and the Qy absorption at 770–870 nm of BChl. The spectral features are substantially different from the Soret and Qx resonance Raman spectra extensively investigated so far; several bands in the wavenumber region lower than 1200 cm−1 are particularly enhanced in the Qy pre-resonance Raman spectra. Bands due to both the C2O and C9O stretches appear at 1700–1620 cm−1, providing structural information on these carbonyl groups. In the CC stretching region (1620–1490 cm−1), the correlation between band positions and the co-ordination number of central magnesium, which was previously found in the Soret-excited Raman spectra, is preserved in the Qy, pre-resonance Raman spectra as well. The relative intensities of strong bands in the 1200–1000 cm−1 region appear to be useful for characterizing the BChl state. By using these advantages of the Qy, pre-resonance Raman spectra, molecular interactions and arrangements of BChl in hydrated films and in the B870 light-harvesting complex of R. sphaeroides are discussed.  相似文献   

12.
The infrared (3200-30 cm−1) and Raman (3200-10 cm−1) spectra of gaseous and solid methylisocyanate, CH3NCO, have been recorded. Additionally, the Raman spectrum of the liquid has been obtained and qualitative depolarization ratios have been measured. The CNC bend has been observed in the far infrared and low frequency Raman spectra of the gas at approximately 172 cm−1. An additional far infrared band at ≈50 cm−1 has tentatively been assigned as the methyl torsional mode, although it could be due to the Δν = 1, Δl = ± 1 transitions of the CNC bending mode. A complete assignment of the vibrational fundamentals is proposed. The structural parameters, force constants, and vibrational frequencies have been determined from ab initio Hartree—Fock gradient calculations using the 6-31G* basis set. Additionally, structural parameters have been obtained with the 6-311 + + G** basis set with electron correlation at the MP2 level which are compared to those obtained from the microwave data and electron diffraction study. These results are compared with the corresponding quantities obtained for similar molecules.  相似文献   

13.
The far i.r. spectrum of 1,2-butadiene (methyl allene) has been recorded in the gas phase from 370 to 40 cm−1 with a resolution of 0.1 cm−1. The methyl torsional fundamental has been observed for the first time at 154.3 cm−1, along with some accompanying torsional hot bands. From these data the barrier to internal rotation has been calculated to be 556 cm−1 (1.59 kcal/mol). Detailed K-structure has also been observed for both A—A and E—E torsional transitions and considered in the analysis. SCF calculations have been made for the structure and energies of conformers, so that both kinetic and potential constants for internal rotation have been obtained. The a′ skeletal fundamental is observed at 201.8 cm−1 as a much stronger band than the torsional mode, and the a″ skeletal fundamental gives rise to an even stronger band at 319.8 cm−1.  相似文献   

14.
《Polyhedron》1999,18(23):2951-2959
A group of five new ruthenium(II) bipyridine heterochelates of the type [RuII(bpy)2L]+ 1a1e have been synthesized (bpy=2,2′-bipyridine; L=anionic form of the thiol-based imine ligands, HS–C6H4NC(H)C6H4(R) (R=OMe, Me, H, Cl, NO2). The complexes 1a1e are 1:1 conducting and diamagnetic. The complexes 1a1e exhibit strong MLCT transitions in the visible region and intra-ligand transitions in the UV region. In acetonitrile solvent complexes show a reversible ruthenium(III)–ruthenium(II) couple in the range 0.2–0.4 V and irreversible ruthenium(III)→ruthenium(IV) oxidation in the range 1.15–1.73 V vs. SCE. Two successive bipyridine reductions are observed in the ranges −1.43 to −1.57 and −1.67 to −1.78 V vs. SCE. The complexes are susceptible to undergo stereoretentive oxidations to the trivalent ruthenium(III) congeners. The isolated one-electron paramagnetic ruthenium(III) complex, 1c+ exhibits weak rhombic EPR spectrum at 77 K (g1=2.106, g2=2.093, g3=1.966) in 1:1 chloroform–toluene. The EPR spectrum of 1c+ has been analyzed to furnish values of distortion parameters (Δ=8988 cm−1; V=0.8833 cm−1) and energy of the expected ligand field transitions (ν1=1028 nm and ν2=1186 nm) within the t2 shell. One of the ligand field transitions has been experimentally observed at 1265 nm.  相似文献   

15.
《Chemical physics letters》1999,291(1-2):82-86
The Fourier transform infrared (IR) spectrum of the ν12 fundamental band of ethylene-d4 (C2D4) has been measured with an unapodized resolution of 0.004 cm−1 in the frequency range of 1030–1130 cm−1. A total of 1340 assigned transitions have been analyzed and fitted using a Watson's A-reduced Hamiltonian in the Ir representation to derive rovibrational constants for the upper state (v12=1) up to five quartic terms with a standard deviation of 0.00042 cm−1. They represent the most accurate constants for the band thus far. The ground state rovibrational constants were also further improved by a fit of combination–differences from the IR measurements. The relatively unperturbed band was found to be basically A-type with a band centre at 1076.98492±0.00003 cm−1.  相似文献   

16.
《Tetrahedron》2019,75(37):130512
Mono-, di- and oligo-ether linked (1,8)pyrenophanes 17 were synthesized, and their fluorescence and conformational properties in the absence and presence of metal ions were elucidated. Fluorescence spectra of 1.0 × 10−5 M solutions of the mono- and di-ether linked pyrenophanes 15 were comprised of only monomer emission bands, while those of the oligoethylene glycol linked analogs 6 and 7 contained both monomer and intramolecular excimer emission bands. Addition of perchlorate salts of Ba2+, Na+ and Li+ to 1:1 v/v CH3CN:CH2Cl2 solutions of 6 and 7 caused decreases in the intensities of the corresponding intramolecular excimer emission bands and, in some cases, increases in the intensities of the monomer emission. Monomer and intramolecular excimer emission from the (1,8)pyrenophanes are suggested to arise from the respective anti and syn conformers, whose ratios are dependent on solvent polarity, temperature and kinds of added metal ions.  相似文献   

17.
The far i.r. (400-50 cm−1) spectra of gaseous and solid furfural (2-furancarboxaldehyde), c-C4H3O (CHO), have been recorded. Additionally, the Raman (3500-20 cm−1) spectra of the gas and liquid have been obtained at variable temperatures and the spectrum of the solid at 25 K. These data have been interpreted on the basis that the molecule exists in two different conformations in the fluid states and that the conformation which has the two oxygen atoms oriented in a trans configuration, OO-trans, is most stable (ΔH ⩽ 1 kcal/mol) in the gas; however, the conformation which has the two oxygen atoms oriented cis, OO-cis, is preferred in the liquid (ΔH = 1.07 ± 0.03 kcal/mol) and is the only rotamer present in the spectra of the solid. The asymmetric torsional fundamental for the OO-trans rotamer has been observed at 146.25 cm−1 in the far i.r. spectrum of the vapor and has five accompanying “hot bands”. The corresponding fundamental for the OO-cis rotamer has been observed at 127.86 cm−1 along with a “hot band” which occurs at 127.46 cm−1. From these data a cosine-based potential function governing internal rotation of the CHO top has been determined and the potential coefficients have values of V1 = 173 ± 2, V2 = 3112 ± 20, V3 = 113 ± 2 and V4 = −198 ± 6 cm−1. This potential is consistent with an enthalpy difference between the more stable OO-trans and high energy OO-cis conformers being 286 ± 24 cm−1 (818 ± 67 cal/mol) and a trans to cis barrier height of 3255 ± 20 cm−1 (9.31 ± 0.06 kcal/mol). These results are compared to the corresponding quantities obtained previously from microwave spectroscopy and theoretical methods.  相似文献   

18.
A type (ΔKa = 0) rovibrational lines of the near-prolate asymmetric top 16O14N35Cl have been assigned on high resolution Fourier transform spectra: 820 lines of the ν1 band, centered around 1800 cm−1, 435 lines of the ν1 + ν3 band, centered around 2131 cm−1, and 257 lines of the ν2 + ν3 band, centered around 925 cm−1. Least-squares calculations have been carried out over these lines, using the A reduced Watson's hamiltonian in Ir representation; r.m.s. standard deviations of 0.0016 cm−1, 0.0016 cm−1 and 0.006 cm−1 have been respectively obtained, making it possible to measure molecular constants of the (001), (101) and (011) vibrational levels of 16O14N35Cl.  相似文献   

19.
The infrared spectrum of CHF2Cl has been recorded between 15 000 and 350 cm−1. The Fermi resonance between levels involving ν4 and 2ν6 is analysed in bands extending from 800 cm−1 to 7000 cm−1 leading to a best value of k466 = ± 14.98 cm−1. In conjunction with the recent results of Amrein, Dubal and Quack, Molec. Phys. 56,727 (1985); estimates are reported for 38 out of 45 possible xij constants. A variation in the relative intensity of the two Q branches associated with ν1, on cooling the gas cell, indicates that a hot band contributes to the upper branch at 3024.55 cm−1. However, other evidence suggests that the latter arises also from the combination ν2 + ν7 + ν9, in a very weak, close resonance with ν1 at 3021.27 cm. A number of anomalous band contours are reported.  相似文献   

20.
A three-step infrared (IR) macro-fingerprint method combining conventional IR spectra, and the secondary derivative spectra with two-dimensional infrared correlation spectroscopy (2D-IR), was developed to analyze Spirulina powder before and after gamma irradiation. In the IR spectra, most of the absorption peaks of samples irradiated at 1, 2.7, 6, and 10.4 kGy had lower intensities than the non-irradiated ones, whereas peaks at 1152, 1078, and 1051 cm−1 were slightly enhanced with irradiation at 2.7, 6, and 10.4 kGy. Their second derivative spectra amplified the differences and revealed that irradiation affected the C=O band of carboxylic acid and esters, and the N–H band of proteins. The peaks at 1746 and 1741 cm−1, and those at 1730 and 1725  cm−1 became two broad peaks. Meanwhile, the three sharp peaks at 1548 cm−1, 1544 cm−1 and 1536 cm−1 changed to two broad peaks at around 1547 and 1534 cm−1 after irradiation at doses higher than 1 kGy. The characteristic IR bands from 1700 cm−1 to 1600 cm−1, which represent the C=O band in proteins, also have different shapes and intensities after irradiation. The finding indicated that irradiation affected the secondary structures of protein which was confirmed by curve fitting results. During the process of increasing the temperature from 50 to 210 °C, the ratio of amide I to II in absorption intensities in the 2D-IR spectra of the irradiated samples varied with different response for different samples. Saccharides in Spirulina powder had a higher thermostability than proteins, but the autopeaks of irradiated samples did show differences from the non-irradiated sample. The intensity of autopeaks at 1012 cm−1 increased dramatically in the irradiated samples while that of peaks at 1053, 1071, and 1083 cm−1 decreased after irradiation. Based on the three-step IR macro-fingerprint method, irradiated Spirulina powder samples were successfully and fast identified and discriminated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号