首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
[1]J.H. Hamilton,A. VRamayya, W.T. Pinkston, et al.,Phys. Rev. Lett. 32 (1974) 239. [2]R. Julin, K. Helariutta, and M. Muikku, J. Phys. G 27(2001) R109. [3]J.H. Hamilton, Nukleonika 24 (1979) 561. [4]W.C. Ma, et al., Phys. Lett. B 139 (1984) 276. [5]R. Bengtsson, et al., Phys. Lett. B 183 (1987) 1. [6]S. Yoshida and N. Takigawa, Phys. Rev. C 55 (1996)1255. [7]T. Niksic, D. Vretenar, P. Ring, et al., Phys. Rev. C 65(2002) 054320. [8]F.G. Condev, M.P. Carpenter, R.V.F. Janssens, et al.,Phys. Lett. B 528 (2002) 221. [9]D.G. Jenkins, A.N. Andreyev, R.D. Page, et al., Phys.Rev. C 66 (2002) 011301(R). [10]B.D. Serot and J.D. Walecka, Adv. Nuc]. Phys. 16 (1986)1. [11]P. Ring, Prog. Part. Nucl. Phys. 37 (1996) 193. [12]J. Meng and P. Ring, Phys. Rev. Lett. 77 (1996) 3963. [13]J. Meng and P. Ring, Phys. Rev. Lett. 80 (1998) 460. [14]S.K. Patra, S. Yoshida, N. Takigawa, and C.R. Praharaj,Phys. Rev. C 50 (1994) 1924. [15]S. Yoshida, S.K. Patra, N. Takigawa, and C.R. Praharaj,Phys. Rev. C 50 (1994) 1938. [16]G.A. Lalazissis and P. Ring, Phys. Lett. B 427 (1998)225. [17]Jun-Qing Li, Zhong-Yu Ma, Bao-Qiu Chen, and Yong Zhou, Phys. Rev. C 65 (2002) 064305. [18]G. Audi and A.H. Wapstra, Nucl. Phys. A 565 (1993) 1. [19]G. Audi and A.H. Wapstra, Nucl. Phys. A 595 (1995)409. [20]G. Audi and A.H. Wapstra, Nucl. Phys. A 624 (1997) 1. [21]P. MOller and J.R. Nix, Atom. Data and Nucl. Data Table 59 (1995) 307.  相似文献   

2.
The classical quantization of a Liénard-type nonlinear oscillator is achieved by a quantization scheme (M. C. Nucci. Theor. Math. Phys., 168:994–1001, 2011) that preserves the Noether point symmetries of the underlying Lagrangian in order to construct the Schrödinger equation. This method straightforwardly yields the Schrödinger equation in the momentum space as given in (V. Chithiika Ruby, M. Senthilvelan, and M. Lakshmanan. J. Phys. A: Math. Gen., 45:382002, 2012), and sheds light on the apparently remarkable connection with the linear harmonic oscillator.  相似文献   

3.
[1]V.D.Burkert,Phys.Lett.B 72 (1997) 109. [2]S.Capstick and W.Roberts,Prog.Part.Nucl.Phys.45 (2000) S241,and references therein. [3]B.S.Zou,Nucl.Phys.A 675 (2000) 167c; B.S.Zou,Nucl.Phys.A 684 (2001) 330; BES Collaboration (J.Z.Bai,et al.) Phys.Lett.B 510 (2001) 75; BES Collaboration (M.Ablikim,et al.),hep-ex/0405030. [4]R.Sinha and Susumu Okubo,Phys.Rev.D 30 (1984)2333. [5]W.H.Liang,P.N.Shen,B.S.Zou,and A.Faessler,Euro.Phys.J A 21 (2004) 487. [6]Particle Data Group,Euro.Phys.J.C 15 (2000) 1. [7]K.Tsushima,A.Sibrtsev,and A.W.Thomas,Phys.Lett.B 390 (1997) 29. [8]J.Kogut,Rev.Mod.Phys.51 (1979) 659; Rev.Mod.Phys.55 (1983) 775. [9]Q.Haider and L.C.Liu,J.Phys.G 22 (1996) 1187; L.C.Liu and W.X.Ma,J.Phys.G 26 (2000) L59. [10]V.G.J.Stoks,R.A.M.Klomp,C.P.F.Terheggen,and J.J.de Swart,Phys.Rev.C 49 (1994) 2950. [11]H.Haberzettl,C.Bennhold,T.Mart,and T.Feuster,Phys.Rev.C 58 (1998) R40. [12]Y.Oh,A.I.Titov,and T.-S.H.Lee,Phys.Rev.C 63(2001) 25201.  相似文献   

4.
[1]R. Casalbuoani, A. Deandrea, and M. Oertel, JHEP 032(2004) 0402. [2]G. Hooft, In Search of the Ultimate Building Blocks, Cambridge University Press, Cambridge (1997). [3]J. Belazey, Searches for New Physics at Hadron Coliders,Northern Illinois University (2005). [4]N. Arkani-hamed, A.G. Cohen, and H. Georgi, Phys. Lett.B 513 (2001) 232 [hep-ph/0105239]. [5]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001 [hep-ph/0207243]. [6]N. Arkani-hamed, A.G. Cohen, E. Katz, and A.E. Nelson,JHEP 0207 (2002) 304 [hep-ph/0206021]. [7]N. Arkani-hamed, A.G. Cohen, E. Katz, A.E. Nelson, T.Gregoire, and J. G. Wacker, JHEP 0208 (2002) 021 [hepph/0206020]. [8]T. Gregoire and J.G. Wacker, JHEP 0208 (2002) 019[hep-ph/0206023]. [9]For a recent review, see e.g., M. Schmaltz, Nucl. Phys. B (Proc. Suppl.) 117 (2003) 40. [10]N. Arkani-hamed, A.G. Cohen, T. Gregoire, and J.G.Jacker, JHEP 0208 (2002) 020 [hep-ph/0202089]. [11]or a recent review, see e.g., M. Schmaltz, Nucl. Phys.Proc. Suppl. 117 (2003) 40 [hep-ph/0210415]. [12]E. Katz, J. Lee, A.E. Nelson, and D.G. Walker, hepph/0312287. [13]M. Beneke, I. Efthymiopoulos, M.L. Mangano, et al., hepph/0003033. [14]D.O. Carlson and C.-P. Yuan, hep-ph/9211289. [15]R. Frey, D. Gerdes, and J. Jaros, hep-ph/9704243. [16]G. Eilam, J.L. Hewett, and A. Soni, Phys. Rev. D 44(1991) 1473; W.S. Hou, Phys. Lett. B 296 (1992) 179; K.Agashe and M. Graesser, Phys. Rev. D 54 (1996) 4445;M. Hosch, K. Whisnant, and B.L. Young, Phys. Rev. D56 (1997) 5725. [17]C.S. Li, R.J. Oakes, and J.M. Yang, Phys. Rev. D 49(1994) 293, Erratum-ibid. D 56 (1997) 3156; G. Couture,C. Hamzaoui, and H. Koenig, Phys. Rev. D 52 (1995)1713; G. Couture, M. Frank, and H. Koenig, Phys. Rev.D 56 (1997) 4213; G.M. de Divitiis, et al., Nucl. Phys. B 504 (1997) 45. [18]B. Mele, S. Petrarca, and A. Soddu, Phys. Lett. B 435(1998) 401. [19]B. Mele, hep-ph/0003064. [20]J.M. Yang and C.S. Li, Phys. Rev. D 49 (1994) 3412,Erratum, ibid. D 51 (1995) 3974; J.G. Inglada, hepph/9906517. [21]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 41 (2004)241. [22]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 40 (2003)171. [23]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, Phys.Rev. D 67 (2003) 095004. [24]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001. [25]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, hepph/0302188. [26]A.J. Buras, A. Poschenrieder, and S. Uhlig, hepph/0410309. [27]S. Eidelman, et al., Phys. Lett. B 592 (2004) 1. [28]F. Legerlehner, DESY 01-029, hep-ph/0105283.  相似文献   

5.
[1]G.T.Bodwin,E.Braaten,and G.P.Lepage,Phys.Rev.D 51 (1995) 1125;[Erratum-ibid.D 55 (1997) 5853][arXiv:hep-ph/9407339]; J.Boltz,P.Kroll,and G.A.Schulre,Phys.Lett.B 392 (1997) 198; J.Boltz,P.Kroll,and G.A.Schulre,Phys.J.C 2 (1998) 705. [2]S.M.Wong,Nucl.Phys.A 674 (2000) 185; S.M.Wong,Eur.Phys.J.C 14 (2000) 643. [3]J.Z.Bai,Y.Ban,J.G.Bian,et al.,Phys.Rev.D 67 (2003)112001. [4]M.Jacob and G.C.Wick,Ann.Phys.7 (1959) 404. [5]S.U.Chung,Phys.Rev.D 48 (1993) 1225; S.U.Chung,Phys.Rev.D 57 (1998) 431; B.S.Zou and D.V.Bugg,Eur.Phys.J.A 16 (2003) 537. [6]Particle Data Group,Phys.Lett.B 592 (2004) pp.924-966. [7]M.A.Doncheski,et al.,Phys.Rev.D 42 (1990) 2293; E.Eichten,et al.,Phys.Rev.D 21 (1980) 203; K.J.Sebastian,Phys.Rev.D 26 (1982) 2295; G.Hardekopf and J.Sucher,Phys.Rev.D 25 (1982) 2938; R.McClary and N.Byers,Phys.Rev.D 28 (1983) 1692; P.Moxhay and J.L.Rosner,Phys.Rev.D 28 (1983) 1132. [8]B.S.Zou and F.Hussain,Phys.Rev.C 67 (2003) 015204.  相似文献   

6.
We propose a method of operating a quantum state machine made of stacked quantum dots buried in adjacent to the channel of a spin field-effect transistor (FET) [S. Datta, B. Das, Appl. Phys. Lett. 56 (1990) 665; K. Yoh, et al., Proceedings of the 23rd International Conference on Physics of Semiconductors (ICPS) 2004; H. Ohno, K. Yoh et al., Jpn. J. Appl. Phys. 42 (2003) L87; K. Yoh, J. Konda, S. Shiina, N. Nishiguchi, Jpn. J. Appl. Phys. 36 (1997) 4134]. In this method, a spin blockade measurement extracts the quantum state of a nearest quantum dot through Coulomb blockade [K. Yoh, J. Konda, S. Shiina, N. Nishiguchi, Jpn. J. Appl. Phys. 36 (1997) 4134; K. Yoh, H. Kazama, Physica E 7 (2000) 440] of the adjacent channel conductance. Repeated quantum Zeno-like (QZ) measurements [H. Nakazato, et al., Phys. Rev. Lett. 90 (2003) 060401] of the spin blockade is shown to purify the quantum dot states within several repetitions. The growth constraints of the stacked InAs quantum dots are shown to provide an exchange interaction energy in the range of 0.01–1 meV [S. Itoh, et al., Jpn. J. Appl. Phys. 38 (1999) L917; A. Tackeuchi, et al., Jpn. J. Appl. Phys. 42 (2003) 4278]. We have verified that one can reach the fidelity of 90% by repeating the measurement twice, and that of 99.9% by repeating only eleven QZ measurements. Entangled states with two and three vertically stacked dots are achieved with the sampling frequency of the order of 100 MHz.  相似文献   

7.
There exist different kinds of averaging of the differences of the energy–momentum and angular momentum in normal coordinates NC(P) which give tensorial quantities. The obtained averaged quantities are equivalent mathematically because they differ only by constant scalar dimensional factors. One of these averaging was used in our papers [J. Garecki, Rep. Math. Phys. 33, 57 (1993); Int. J. Theor. Phys. 35, 2195 (1996); Rep. Math. Phys. 40, 485 (1997); J. Math. Phys. 40, 4035 (1999); Rep. Math. Phys. 43, 397 (1999); Rep. Math. Phys. 44, 95 (1999); Ann. Phys. (Leipzig) 11, 441 (2002); M.P. Dabrowski and J. Garecki, Class. Quantum. Grar. 19, 1 (2002)] giving the canonical superenergy and angular supermomentum tensors. In this paper we present another averaging of the differences of the energy–momentum and angular momentum which gives tensorial quantities with proper dimensions of the energy–momentum and angular momentum densities. We have called these tensorial quantities “the averaged relative energy–momentum and angular momentum tensors”. These tensors are very closely related to the canonical superenergy and angular supermomentum tensors and they depend on some fundamental length L > 0. The averaged relative energy–momentum and angular momentum tensors of the gravitational field obtained in the paper can be applied, like the canonical superenergy and angular supermomentum tensors, to coordinate independent analysis (local and in special cases also global) of this field. Up to now we have applied the averaged relative energy–momentum tensors to analyze vacuum gravitational energy and momentum and to analyze energy and momentum of the Friedman (and also more general, only homogeneous) universes. The obtained results are interesting, e.g., the averaged relative energy density is positive definite for the all Friedman and other universes which have been considered in this paper.   相似文献   

8.
We report and substantiate a method for constructing the rotational energy surface (RES) of a molecule as a pure classical object. For an arbitrary molecule we start from the potential energy surface rather than from a conventional “effective Hamiltonian”. The method is used for constructing the RES of the PH3 molecule in its ground vibrational state. We have used an ab initio potential energy surface [D. Wang, Q. Shi, Q.-S. Zhu, J. Chem. Phys. 112 (2000) 9624-9631; S.N. Yurchenko, M. Carvajal, P. Jensen, F. Herregodts, T.R. Huet, Chem. Phys. 290 (2003) 59-67.]. The shape of the RES is shown not to change for J from 0 to 120. The procedure of quasiclassical quantization of the RES was also undertaken, yielding a set of quasiclassical critical values of the angular momentum. The results explain the structure of quantum rotational energy levels obtained by variational calculations [S.N. Yurchenko, W. Thiel, S. Patchkovskii, P. Jensen, Phys. Chem. Chem. Phys. 7 (2005) 573-582].  相似文献   

9.
For a wide class of antiferromagnetic models we prove the existence of a phase transition using an extended Peierls argument, taking into account a result of Dobrushin [R. L. Dobrushin,Funct. Anal. Appl. 2:44 (1968); in English,2:302 (1968)] for an antiferromagnetic Ising model and the results of Malyshev [V. Malyshev,Comm. Math. Phys. 40:75–82 (1975)] for ferromagnetic models (such as the anisotropic rotator). In particular we review a result of Fröhlich, Israel, Lieb, and Simon [J. Fröhlichet al., J. Stat. Phys. 22(3):297–347 (198)] obtained when reflection positivity holds.  相似文献   

10.
《Physics letters. A》1997,229(4):262-263
We show that a linear change of variables proves simpler to treat kinetic couplings in one-dimensional two-particle systems than a recently proposed representation based on the eigenvectors of the relative position and total momentum [H. Fan et al., Phys. Lett. A 213 (1996) 226]. As a particular example we consider the Morse oscilltor recently treated by the latter method.  相似文献   

11.
Results of recent inelastic neutron scattering studies of lead-based relaxor ferroelectrics by Gvasaliya et al. [J. Phys.: Condens. Matter 17, 4343 (2005); J. Phys.: Condens. Matter 19, 016219 (2007)] have put in question the existence of the “waterfall” anomaly–an apparent vertical dispersion segment joining the TA and TO branches–observed earlier in low-energy [ξ00] phonon dispersion curves of these materials. In the present article, we review the results of earlier experiments and model calculations together with the outcome of our recent measurements on PMN using the same instrumental set-up as Gvasaliya et al. to conclude that the “waterfall” feature is not an experimental artefact. We also give some hints on a possible explanation of the results of Gvasaliya et al., by exploring the fact that the reported dispersion of the underdamped transverse optic branch follows the longitudinal acoustic (LA) branch dispersion surprisingly closely.  相似文献   

12.
A linear kinetic stability code for tokamak plasmas: AEGIS-K (Adaptive EiGenfunction Independent Solutions-Kinetic), is described. The AEGIS-K code is based on the newly developed gyrokinetic theory [L.J. Zheng, M.T. Kotschenreuther, J.W. Van Dam, Phys. Plasmas 14 (2007) 072505]. The success in recovering the ideal magnetohydrodynamics (MHD) from this newly developed gyrokinetic theory in the proper limit leads the AEGIS-K code to be featured by being fully kinetic in essence but hybrid in appearance. The radial adaptive shooting scheme based on the method of the independent solution decomposition in the MHD AEGIS code [L.J. Zheng, M.T. Kotschenreuther, J. Comp. Phys. 211 (2006) 748] is extended to the kinetic calculation. A numerical method is developed to solve the gyrokinetic equation of lowest order for the response to the independent solutions of the electromagnetic perturbations, with the quasineutrality condition taken into account. A transform method is implemented to allow the pre-computed Z-function (i.e., the plasma dispersion function) to be used to reduce the integration dimension in the moment calculation and to assure the numerical accuracy in determining the wave–particle resonance effects. Periodic boundary condition along the whole banana orbit is introduced to treat the trapped particles, in contrast to the usual reflection symmetry conditions at the banana tips. Due to the adaptive feature, the AEGIS-K code is able to resolve the coupling between the kinetic resonances and the shear Alfvén continuum damping. Application of the AEGIS-K code to compute the resistive wall modes in ITER is discussed.  相似文献   

13.
The change of the scattering properties of sodium, gold and silver spherical particles with size is discussed in the context of surface multipolar plasmon resonances. The presented surface plasmon size characteristics are abstracted from the quantity which is observed and deliver multipolar plasmon resonance frequencies and plasmon damping rates in the form of a continuous function of particle radius. The performed analysis of the plasmon dispersion relation is analogous to the problem of surface plasmon localized at a semi-infinite, flat metal/dielectric interface.Correlation between the multipolar plasmon resonance parameters, and the spectroscopic optical properties of conductive nanoparticles appearing as peaks in the measurable light intensities is analyzed. We discuss the fact, that such peaks arise from interference of all the electromagnetic fields contributing to the measured intensity, and not solely to the fields due to surface plasmon multipolar modes.We describe the results of light scattering experiment in orthogonal polarization geometries with use of spontaneously growing sodium droplets. The polarization geometry of the experiment allows for distinct separation of resonant contribution of dipole and quadrupole plasmon TM mode contributions to the measured intensities as a function of size.Predictions concerning size characteristics for dipole and quadrupole plasmons are compared with the results of light scattering experiments using spherical sodium droplets (our results) and gold and silver particles in suspension [other authors: Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J. Plasmon resonances in large noble-metal clusters. New J Phys 2002; 4:93.1–8; Haiss W, Thanh NTK, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal Chem 2007; 79:4215–21; Njoki PN, Lim I-IS, Mott D, Park H-Y, Khan B, Mishra S, et al. Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C 2007; 111:14664–9; Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 2002; 116:6755–9].  相似文献   

14.
15.
The excitation spectrum of the frustrated spin-1/2 Heisenberg chain is reexamined using variational and exact diagonalization calculations. We show that the overlap matrix of the short-range resonating valence bond states basis can be inverted which yields tractable equations for single and two spinons excitations. Older results are recovered and new ones, such as the bond-state dispersion relation and its size with momentum at the Majumdar-Ghosh point are found. In particular, this approach yields a gap opening at J 2 = 0.25J 1 and an onset of incommensurability in the dispersion relation at J 2 = 9/17J 1 as in [S. Brehmer et al., J. Phys.: Condens. Matter 10, 1103 (1998)]. These analytical results provide a good support for the understanding of exact diagonalization spectra, assuming an independent spinons picture.  相似文献   

16.
[1]J.Gasser,H.Leutwyler,and M.E.Sainio,Phys.Lett.B 253 (1991) 252. [2]John Ellis,Eur.Phys.J.A 24S2 (2005) 3,[arXive:hepph/0411369]. [3]T.Inoue,V.E.Lyubovitskij,Th.Gutsche,and Amand Faessler,Phys.Rev.C 69 (2004) 035207,[arXive:hepph/0311275]. [4]M.M.Pavan,I.I.Strakovsky,R.L.Workman,and R.A.Arndt,PiN Newslett.16 (2002) 110,[arXive:hepph/0111066]. [5]V.E.Lyubovitskij,Th.Gutsche,Amand Faessler,and E.G.Drukarev,Phys.Rev.D 63 (2001) 054026,[arXive:hep-ph/0009341]. [6]S.D.Bass,Phys.Lett.B 329 (1994) 358,[arXive:hepph/9404294]. [7]Marc Knecht,PiN Newslett.15 (1999) 108,[arXive:hepph/9912443]. [8]P.Schweitzer,Phys.Rev.D 69 (2004) 034003. [9]B.C.Lehnhart,J.Gegelia,and S.Scherer,J.Phys.G 31(2005) 89,[arXive:hep-ph/0412092]. [10]P.J.Ellis and K.Torikoshi,Phys.Rev.C 61 (1999)015205. [11]Gerald E.Hite,William B.Kaufmann,and Richard J.Jacob,Phys.Rev.C 71 (2005) 065201. [12]S.Weinberg,Physica A 96 (1979) 327. [13]J.Gasser and H.Leutwyler,Nucl.Phys.B 250 (1985)465. [14]J.Gasser,M.E.Sainio,and A.Svarc,Nucl.Phys.B 307(1988) 779. [15]P.Papazoglou,D.Zschiesche,S.Schramm,J.SchaffnerBielich,H.St(o)cker,and W.Greiner,Phys.Rev.C 59(1999) 411. [16]T.Fuchs and J.Gegelia,Phys.Rev.D 68 (2003) 056005.  相似文献   

17.
A. Gross 《Molecular physics》2013,111(4):419-427
Computing the entropy of a system from a single trajectory is discussed when the energy exchange with the environment includes both mechanical and thermal terms. The physical example chosen as an illustration is a cluster of atoms impacting a hard surface. Each atom of the cluster interacts with the smooth surface by a momentum transfer using the hard cube model [E. K. Grimmelmann, J. C. Tully and M. J. Cardillo, J. Chem. Phys. 72, 1039 (1980)]. Because of the thermal motion of the surface atoms the atoms of the cluster rebound from the surface with a (random) thermal component to their momentum. The change in the internal energy of the cluster has therefore both a mechanical, work, term and a heat transfer and the heat term contributes to the change in entropy of the cluster but the major contribution is the loss of potentially available work.  相似文献   

18.
The potential energy curves of the rare gas dimers He2, Ne2, and Ar2 have been computed using correlation consistent basis sets ranging from singly augmented aug-cc-pVDZ sets through triply augmented t-aug-cc-pV6Z sets, with the augmented sextuple basis sets being reported herein. Several methods for including electron correlation were investigated, namely Møller—Plesset perturbation theory (MP2, MP3 and MP4) and coupled cluster theory [CCSD and CCSD(T)]. For He2 CCSD(T)/d-aug-cc-pV6Z calculations yield a well depth of 7.35 cm-1 (10.58 K), with an estimated complete basis set (CBS) limit of 7.40 cm-1 (10.65 K). The latter is smaller than the 'exact' well depth (Aziz, R. A., Janzen, A. R., and Moldover, M. R., 1995, Phys. Rev. Lett., 74, 1586) by about 0.2 cm-1 (0.35 K). The Ne2 well depth, computed with the CCSD(T)/d-aug-cc-pV6Z method, is 28.31 cm-1 and the estimated CBS limit is 28.4 cm-1, approximately 1 cm-1 smaller than the empirical potential of Aziz, R. A., and Slaman, M., J., 1989, Chem. Phys., 130, 187. Inclusion of core and core—valence correlation effects has a negligible effect on the Ne2 well depth, decreasing it by only 0.04 cm-1. For Ar2, CCSD(T)/d-aug-cc-pV6Z calculations yield a well depth of 96.2 cm-1. The corresponding HFDID potential of Aziz, R. A., 1993, J. chem. Phys., 99, 4518 predicts of De of 99.7 cm-1. Inclusion of core and core-valence effects in Ar2 increases the well depth and decreases the discrepancy by approximately 1 cm-1.  相似文献   

19.
We determine the intrinsic longitudinal dispersivity l(d) of randomly packed monodisperse spheres by separating the intrinsic stochastic dispersivity l(d) from dispersion by unavoidable sample dependent flow heterogeneities. The measured l(d), scaled by the hydrodynamic radius r(h), coincide with theoretical predictions [Saffman, J. Fluid Mech. 7, 194 (1960)] for dispersion in an isotropic random network of identical capillaries of length l and radius a, for l/a=3.82, and with rescaled simulation results [Maier et al., Phys. Fluids 12, 2065 (2000)].  相似文献   

20.
A double Tavis-Cummings model (DTCM) is developed to simulate the entanglement dynamics of realistic quantum information processing where two entangled atom-pairs AB and CD are distributed in such a way that atoms AC are embedded in a cavity a while BD are located in another remote cavity b. The evolutions of different types of initially shared entanglement of atoms are studied under various initial states of cavity fields. The results obtained in the DTCM are compared with that obtained in the double Jaynes-Cummings model (DJCM) [M. Yönaç, T. Yu, J.H. Eberly, J. Phys. B 40, S45 (2007)] and an interaction strength theory is proposed to explain the parameter domain in which the so-called entanglement sudden death occurs for both the DTCM and DJCM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号