首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyvinyl chloride (PVC)/organic-montmorillonite composites were prepared by melt intercalation. Their structures and properties were investigated with X-ray diffraction (XRD), differential scanning calorimetry (DSC) and mechanical testing. The results showed that PVC chains could be intercalated into the gallery of organically modified montmorillonite to form exfoliated PVC/organic-montmorillonite nanocomposites, and the glass transition temperatures of PVC/organic-montmorillonite composites were lower than that of neat PVC. However, the tensile strength, and both the Izod type and Charpy notched impact strengths of PVC/organic-montmorillonite nanocomposites were fitted with the linear expressions: t=535.07-6.39T g, s I=378.76-4.59T g and sC=276.29-3.59T g, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Monoalkyl- and dialkyl-imidazolium surfactants were used to prepare organically modified montmorillonites with markedly improved thermal stability in comparison with their alkyl-ammonium equivalents (the decomposition temperatures increased by ca. 100 °C). Such an increase in the thermal stability affords the opportunity to form syndiotactic polystyrene (s-PS)/imidazolium-montmorillonite nanocomposites even under static melt-intercalation conditions in the absence of high shear rates or solvents. Upon nanocomposite formation, s-PS exhibited an improvement in the thermal stability in comparison with neat s-PS, and the β-crystal form of s-PS became dominant. This crystallization response agrees with previous studies of s-PS/pyridinium-montmorillonite hybrids and is tentatively attributed to a heterogeneous nucleation action by the inorganic fillers. © 2003 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 41: 3173–3187, 2003  相似文献   

3.
Polyamide 6 (PA6)/montmorillonite (MMT) nanocomposites were prepared via melt intercalation. The structure, mechanical properties, and nonisothermal crystallization kinetics of PA6/MMT nanocomposites were investigated by X‐ray diffraction (XRD), tensile and impact tests, and differential scanning calorimetry (DSC). Before melt compounding, MMT was treated with an organic surfactant agent. XRD traces showed that PA6 crystallizes exclusively in γ‐crystalline structure within the nanocomposites. Tensile measurements showed that the MMT additions are beneficial in improving the strength and the stiffness of PA6, at the expense of tensile ductility. Impact tests revealed that the impact strength of PA6/MMT nanocomposites tended to decrease with increasing MMT content. The nonisothermal crystallization DSC data were analyzed by Avrami, Ozawa, modified Avrami‐Ozawa, and Nedkov methods. The validity of these empirical equations on the nonisothermal crystallization process of PA6/MMT nanocomposites is discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2878–2891, 2004  相似文献   

4.
Polyurethane/organically modified montmorillonite (PU/O‐MMT) nanocomposites were electrospun and the effect of O‐MMT on the morphology and physical properties of the PU/O‐MMT nanofiber mats were investigated for the first time. The average diameters of the PU/O‐MMT nanofibers were ranged from 150 to 410 nm. The conductivities of the PU/O‐MMT solutions were linearly increased with increasing the content of O‐MMT, which caused a decrease in the average diameters of the PU/O‐MMT nanofibers. The as‐electrospun PU and PU/O‐MMT nanofibers were not microphase separated. The exfoliated MMT layers were well distributed within the PU/O‐MMT nanofibers and oriented along the fiber axis. When the PU/O‐MMT nanofibers were annealed, the exfoliated MMT layers hindered the microphase separation of the PU. The electrospinning of PU/O‐MMT nanocomposites resulted in PU nanofiber mats with improved Young's modulus and tensile strength. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3171–3177, 2005  相似文献   

5.
The effect of silicananofiller on the glass transition of a polyurethane was studied by DSC. Thepristine polymer exhibits a single glass transition at about –10°C.Uniform SiO2 spheres with different average sizes and narrow size distributionswere synthesized in solution by the Stöber method [1]. Both the effectsof silica content within the polymer and particle size were investigated,as well as two different surface treatments. Scanning electron microscopy(SEM) clearly confirms the presence of the particles within the polymer matrix,showing uniform distribution and no agglomeration. While shifting of the glasstransition has been reported by many authors, we have not seen any noticeableshift in this polymer. Surprisingly, we found no relevant effects when eitherincreasing the filler content or changing the particle size. Different amountsof particles with average diameters of 175, 395 and 730 nm did not affectthe glass transition temperature of the pristine polymer.  相似文献   

6.
Poly(vinylidene fluoride) (PVDF)/montmorillonite (MMT) nanocomposites were prepared by melt blen- ding a kind of organically modified montmorillonite with PVDF. The morphological structures of the nanocomposites were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The re- sults indicate that organically modified montmorillonites are in the form of intercalation, exfoliation, and fragments in the PVDF matrix. For the composites, the (001) peak position of MMT was found to shift to a lower angle in XRD patterns, and some MMT fragments could be observed under TEM. MMT loading was favorable to producing the piezoelectric β phase in the PVDF matrix and caused internal stress in α crystals. At the same time, the crystallinity and spherulite size of PVDF decreased with the MMT content. MMT induced β phase is stable even at high temperatures (160℃). For these changes in morphological structures, some possible explanations were proposed based on the experimental re- sults.  相似文献   

7.
In this work, the effect of quaternary ammonium salt containing nanoclay content (1–5 wt%) on phase morphology, rheology, cure kinetics, and mechanical properties of the vinyl ester resin (VER)‐based nanocomposites was studied. The morphological characterization including d‐spacing measurement, microscopy observation and phase‐height image processing were performed on the prepared nanocomposites using small angel X‐ray scattering (SAXS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). According to the results obtained from these techniques, it was concluded that an intercalated morphology existed for all the nanocomposites. The kinetic analyses of the isothermal curing followed by storage modulus obtained from the rheometry experiments are shown to be an affective rheological characteristic to investigate the cure behavior of VER/clay nanocomposites. In addition, the most important finding regarding the effect of nanoclay on the cross‐linking behavior of VER systems lays on the chemisorption and physisorption of the reacting monomers and initiator molecules on the nanoclay platelets surface which is found to be responsible for the retardation of the cure reaction caused by organoclay. Eventually, the mechanical characterizations were performed through the tensile, flexural and impact analysis tests. In this case, a considerable improvement of the bulk mechanical responses such as tensile and flexural strengths and also the corresponding moduli were observed for the nanocomposites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Using differential scanning calorimetry (DSC), we have studied, under isothermal and dynamic conditions, the kinetics of the cure reaction for an epoxy resin based on the diglycidyl ether of bisphenol A (DGEBA) modified with different contents of acrylonitrile–butadiene–styrene (ABS) and cured with 1,3‐bisaminomethylcyclohexane (1,3‐BAC). Kinetic analysis were performed using three kinetic models: Kissinger, Flynn–Wall–Ozawa, and the phenomenological model of Kamal as a result of its autocatalytic behavior. Diffusion control is incorporated to describe the cure in the latter stages, predicting the cure kinetics over the whole range of conversion. The total heats of reaction were not influenced by the presence of ABS. The autocatalytic mechanism was observed both in the neat system as well as in its blends. The reaction rates of the blends and the maximum conversions reached did not change too much with the ABS content. Blending ABS within the epoxy resin does not change the reaction mechanism of the epoxy resin formation. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 351–361, 2000  相似文献   

9.
The curing mechanisms and kinetics of diglycidyl ether of bisphenol A with diethylenetriamine as the curing agent and different amounts of organic montmorillonite were examined with isothermal and dynamic scanning calorimetry. The modified Avrami equation was used to calculate the activation energy and reaction orders in the isothermal experiment. A single peak was observed in each dynamic scan. The curing mechanism and kinetics of the curing reaction were also analyzed by two kinds of methods—Kissinger and Flynn–Wall–Ozawa. The results obtained from those methods under dynamic measurement agreed with those obtained from the modified Avrami equation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 378–386, 2003  相似文献   

10.
A novel thermosetting polyurethane (TSPU)/organic montmorillonite (OMMT) nanocomposite has been synthesized. N‐diamino octadecyl trimethyl ammonium chloride (DODTMAC) was used as an intercalation agent to treat Na+‐montmorillonite (MMT) and form a novel kind of OMMT. Fourier transform infrared spectroscopy (FT‐IR), wide angle X‐ray diffraction (WAXD), and thermogravimetric analysis (TGA) data indicated that the MMT was successfully intercalated by this intercalation agent, as evidenced by the fact that the basal spacing of MMT galleries was expanded from 1.5 to 3.2 nm. This OMMT was used to prepare the TSPU nanocomposites. Both the reinforcing and compatibilizing performance of the filler were investigated. Tensile tests showed that the tensile strength of TSPU/OMMT‐4 was the highest, and was about 3.62 times higher than that of the pure TSPU, and also the elongation at break showed an enhancement. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) measurements illustrated that the glass transition temperature of the TSPU/OMMT‐4 nanocomposite was improved from 0.5 to 6.5 °C, which corresponded to the restriction of the soft segments of TSPU. The highest initial and center temperatures of TSPU/OMMT‐4 obtained from TGA were due to the highest retard effect of the TSPU molecular chains. WAXD studies showed that the formation of the nanocomposites in all the cases with the almost disappearance of the peaks corresponding to the basal spacing of MMT. SEM and TEM were used to investigate the morphologies of the TSPU/OMMT‐4 nanocomposite, and demonstrated that the nanocomposite was comprised of a well dispersion of a mixture of intercalated and exfoliated silicate layers throughout the matrix. It was proposed that the nano‐reinforcing effect caused by the well‐dispersed silicate layers might reduce the amount and size of voids and increase the length of the crack‐spreading path during tensile drawing. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 519–531, 2007.  相似文献   

11.
The non-isothermal crystallization kinetics of polyethylene (PE), PE/organic-montmorillonite (Org-MMT) composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the non-isothermal crystallization process of these samples very well. The difference in the exponent n between PE and PE/Org-MMT nanocomposites, indicated that non-isothermal kinetic crystallization corresponded to tridimensional growth with heterogeneous nucleation. The values of half-time, Zc and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PE and PE/Org-MMT composites, but the crystallization rate of PE/Org-MMT composite was faster than that of PE at a given cooling rate. The method developed by Ozawa did not describe the non-isothermal crystallization process of PE very well. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The results showed that the activation energy of PE/Org-MMT was greatly larger than that of PE. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The cure kinetics of tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM) and 4,4′‐diaminodiphenylsulfone (DDS) as a cure agent in nanocomposites with multiwalled carbon nanotubes (MWNTs) have been studied with an isothermal differential scanning calorimetry (DSC) technique. The experimental data for both the neat TGDDM/DDS system and for epoxy/MWNTs nanocomposites showed an autocatalytic behavior. Kinetic analysis was performed with the phenomenological model of Kamal and a diffusion control function was introduced to describe the cure reaction in the later stage. Activation energies and kinetic parameters were determined by fitting experimental data. For MWNTs/epoxy nanocomposites, the initial reaction rates increased and the time to the maximum rate decreased with increasing MWNTs contents because of the acceleration effect of MWNTs. The values of the activation energies for the epoxy/MWNTs nanocomposites were lower than the values for the neat epoxy in the initial stage of the reaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3701–3712, 2004  相似文献   

13.
The urethane forming cure reactions of hydroxyl terminated polybutadiene (HTPB) binder with three different isocyanate curatives, viz., toluene diisocyanate (TDI), isophorone diisocyanate (IPDI) and 4,4-methylene bis(cyclohexyl isocyanate) (MCHI), were investigated by differential scanning calorimetry (DSC). The effect of two cure catalysts, viz., dibutyl tin dilaurate (DBTDL) and ferrric tris-acetylacetonate (FeAA) on the cure reactions was also studied. Cure kinetics was evaluated using the multiple heating rate Ozawa method. The reactivities of the three isocyanates and catalytic efficiencies were compared based on the DSC reaction temperatures, activation energies and rate constants. Viscosity build-up in these systems at isothermal temperature was also studied and compared with the results from DSC.  相似文献   

14.
Polyaniline sulfate‐zeolite composite was prepared by emulsion polymerization. Epoxy resin was cured using polyaniline‐sulfate salt and various amounts of polyaniline sulfate‐zeolite composite. The kinetics of the cure reaction for an epoxy resin based on the diglycidyl ether of bisphenol A (DGEBA) with polyaniline‐sulfate and polyaniline sulfate‐zeolite composite have been studied using differential scanning calorimetry (DSC) under isothermal and dynamic conditions. Isothermal kinetics analysis was performed using the phenomenological model of Kamal. Dynamic kinetic analysis was performed using Kissinger's method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
A new class of nanocomposite has been fabricated from liquid crystalline (LC) epoxy resin of 4,4′‐bis(2,3‐epoxypropoxy) biphenyl (BP), 4,4′‐diamino‐diphenyl sulfone (DDS), and multiwalled carbon nanotubes (CNTs). The surface of the CNTs was functionalized by LC epoxy resin (ef‐CNT). The ef‐CNT can be blended well with the BP that is further cured with an equivalent of DDS to form nanocomposite. We have studied the curing kinetics of this nanocomposite using isothermal and nonisothermal differential scanning calorimetry (DSC). The dependence of the conversion on time can fit into the autocatalytic model before the vitrification, and then it becomes diffusion control process. The reaction rate increases and the activation energy decreases with increasing concentration of the ef‐CNT. At 10 wt % of ef‐CNT, the activation energy of nanocomposite curing is lowered by about 20% when compared with the neat BP/DDS resin. If the ef‐CNT was replaced by thermal‐insulating TiO2 nanorods on the same weight basis, the decrease of activation energy was not observed. The result indicates the accelerating effect on the nanocomposite was raised from the high‐thermal conductivity of CNT and aligned LC epoxy resin. However, at ef‐CNT concentration higher than 2 wt %, the accelerating effect of ef‐CNTs also antedates the vitrification and turns the reaction to diffusion control driven. As the molecular motions are limited, the degree of cure is lowered. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

16.
The investigation of cure kinetics and relationships between glass transition temperature and conversion of biphenyl epoxy resin (4,4′-diglycidyloxy-3,3′,5,5′-tetramethyl biphenyl) with different phenolic hardeners was performed by differential scanning calorimeter using an isothermal approach over the temperature range 120–150°C. All kinetic parameters of the curing reaction including the reaction order, activation energy, and rate constant were calculated and reported. The results indicate that the curing reaction of formulations using xylok and dicyclopentadiene type phenolic resins (DCPDP) as hardeners proceeds through a first-order kinetic mechanism, whereas the curing reaction of formulations using phenol novolac as a hardener goes through an autocatalytic kinetic mechanism. The differences of curing reaction with the change of hardener in biphenyl epoxy resin systems were explained with the relationships between Tg and reaction conversion using the DiBenedetto equation. A detailed cure mechanism in biphenyl-type epoxy resin with the different hardeners has been suggested. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 773–783, 1998  相似文献   

17.
Thermal analysis is a useful tool for investigating the properties of polymer/clay nanocomposites and mechanisms of improvement of thermal properties. This review work presents examples of applications of differential scanning calorimetry (DSC), modulated temperature differential scanning calorimetry (MT-DSC), dynamic mechanical thermal analysis (DMA), thermal mechanical analysis (TMA), thermogravimeric analysis (TG) and thermoanalytical methods i.e. TG coupled with Fourier transformation infrared spectroscopy (TG-FTIR) and mass spectroscopy (TG-MS) in characterization of nanocomposite materials. Complex behavior of different polymeric matrices upon modification with montmorillonite is briefly discussed.  相似文献   

18.
Polybenzoxazine (PBZ), which has a structure similar to that of phenolic resin, is formed through the thermal self‐curing of benzoxazine, that is through a heterocyclic ring opening reaction that requires no catalyst and releases no condensation byproducts. We have used the solvent blending method to prepare PBZ/clay nanocomposites possessing various clay contents. We synthesized a monofunctional benzoxazine monomer (MBM) and then treated the clay with this intercalation agent. The results of X‐ray diffraction (XRD) analysis indicated that MBM intercalated into the galleries of the clay; the nanocomposite possessed an exfoliated structure at 3% clay content. To better understand the curing kinetics of the PBZ/clay nanocomposites, we performed dynamic and isothermal differential scanning calorimetry (DSC) measurements. We describe the thermodynamics of the curing process, using all three of the Kissinger, Ozawa, and Kamal models. The Kissinger and Ozawa methods gave fairly close results for the calculated activation energies, which decreased upon increasing the clay content. The Kamal method, based on an autocatalytic model, suggested a total reaction order of between 2.4 and 2.8. The glass transition temperature (Tg) decreased upon increasing the clay content. Thermogravimetric analysis (TGA) indicated that the nanocomposites have higher decomposition temperatures than does the pristine PBZ; this finding suggests an enhancement in their thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 347–358, 2006  相似文献   

19.
王玉花  程超 《化学研究》2011,22(3):51-55
将有机化的蒙脱土与尼龙6(PA6)在Haake共混机中共混,制备出尼龙6/蒙脱土纳米复合材料(PA6N);对尼龙6/蒙脱土纳米复合材料和纯尼龙6分别进行差示扫描量热法非等温结晶试验,以了解蒙脱土在尼龙6/蒙脱土纳米复合材料中的成核作用、扩大尼龙6在包装领域的应用范围.与此同时,采用偏光显微镜测定了样品的结晶形态;采用紫...  相似文献   

20.
Epoxy resins of DGEBA type were thermally cured with diaminodiphenylmethane as crosslinking agent, and then analysed by Differential Scanning calorimetry (DSC) at various heating rates in order to determine the glass transition temperatureT g of the final networks. First it was shown that during cyclingT g is shifted towards higher values up to a maximum or . Such a change is attributed to an increasing extent of cure which develops during the thermal analysis, and also to relaxation processes thermally activated inside the polymeric matrix. Then the dependence of on the heating rateq imposed by the DSC apparatus was presented forq changing from 0.1 to10C min–1. At heating rates exceeding 3C min–1 only the classical temperatureT g was detected, but at smallerq values, an additional endothermic transition was revealed, located at higher temperature and linked to a physical aging-like phenomenon, which takes place at low heating rates. The plot of against logq is divided into two quasi-linear parts on each side ofq=3C min–1. In conclusions, an equation was given to describe the vs. logq function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号