首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that, in contrast with conventional normal metal-insulator-superconductor (NIS) junctions, the tunneling conductance of a NIS junction in graphene is an oscillatory function of the effective barrier strength of the insulating region, in the limit of a thin barrier. The amplitude of these oscillations is maximum for aligned Fermi surfaces of the normal and superconducting regions and vanishes for a large Fermi surface mismatch. The zero-bias tunneling conductance, in sharp contrast to its counterpart in conventional NIS junctions, becomes maximum for a finite barrier strength. We also suggest experiments to test these predictions.  相似文献   

2.
The thermopower and conductance in a zigzag graphene p-n junction are studied by using the nonequilibrium Green's function method combined with the tight-binding Hamiltonian. Our results show that the conductance and thermopower of the junction can be modulated by its width, the potential drop, and the applied perpendicular magnetic fields. A narrow graphene p-n junction shows insulating characteristics, and its thermopower is much larger than that of the wider one around the Dirac point. The insulating characteristic of the junction decreases as the width increases. In particular, with increasing junction width or the potential drop, the first conductance plateau is strongly enhanced and the thermopower is inverted around the Dirac point. A perpendicular magnetic field strongly suppresses the conductance and enhances the thermopower in the p-n region. The influence of edge vacancy defects on the conductance and thermopower is also discussed. Our results provide theoretical references for modulating the electronic and thermal properties of a graphene p-n junction by tuning its geometry and working conditions.  相似文献   

3.
陈玉  陈家麟  查国桥  周世平 《物理学报》2014,63(17):177402-177402
本文运用平均场模型的Dirac-Bogoliubov-de-Gennes方程和Bolonder-Tinkham-Klapwijk理论研究石墨烯铁磁-绝缘层-超导结的输运性质.研究表明:考虑有限宽度的绝缘层,隧穿电导-电压曲线呈现无衰减的振荡行为;同时隧穿电导随铁磁层中的交换能呈现非单调变化.对上述现象从石墨烯中类Dirac准粒子色散关系密切相关的电子散射过程予以解释.  相似文献   

4.
We achieve tunneling spin injection from Co into single layer graphene (SLG) using TiO? seeded MgO barriers. A nonlocal magnetoresistance (ΔR(NL)) of 130 Ω is observed at room temperature, which is the largest value observed in any material. Investigating ΔR(NL) vs SLG conductivity from the transparent to the tunneling contact regimes demonstrates the contrasting behaviors predicted by the drift-diffusion theory of spin transport. Furthermore, tunnel barriers reduce the contact-induced spin relaxation and are therefore important for future investigations of spin relaxation in graphene.  相似文献   

5.
李晓薇  刘淑静 《物理学报》2006,55(2):834-838
利用Blonder,Tinkham和Klapwijk理论计算了正常金属/绝缘层/正常金属/自旋三重态的p波超导体结的隧道谱和平均电流.计算结果表明:在自旋三重态p波超导结的隧道谱中存在零偏压电导峰、零偏压电导凹陷和双凹陷结构,并有微分电导随偏压震荡的现象出现,在I-V曲线上出现电流台阶.这些结果在理论上支持Sr2RuO4的超导态是自旋三重态p波超导态. 关键词: 自旋三重态超导体 p波超导体 隧道谱  相似文献   

6.
Using the density functional theory and the nonequilibrium Green's function method, we studied the finite-bias quantum transport in a Cr/graphene/Cr magnetotunnel junction(MTJ) constructed by a single graphene layer sandwiched between two semi-infinite Cr(111) electrodes. We found that the tunneling magnetoresistance(TMR) ratio in this MTJ reached108%, which is close to that of a perfect spin filter. Under an external positive bias, we found that the TMR ratio remained constant at 65%, in contrast to Mg O-based MTJs, the TMR ratios of which decrease with increasing bias. These results indicate that the Cr/graphene/Cr MTJ is a promising candidate for spintronics applications.  相似文献   

7.
The tunneling conductance for a junction device consisting of a normal metal and a singlet superconductor is studied with Rashba spin orbit coupling (RSOC) being present in the metallic lead and the interface separating the two regions via an extended Blonder-Tinkham-Klapwijk (BTK) formalism. Interesting interplay between the RSOC and a number of parameters that have experimental significance, and characterize either the junction or the superconducting leads, such as the barrier transparency, quasiparticle lifetime, Fermi wavevector mismatch, an in-plane magnetic field and their effects on the tunneling conductance are investigated in details for both a s-wave and a d-wave superconductor. In an opaque barrier, in presence of a quasiparticle lifetime, a Fermi wavevector mismatch or an external in-plane magnetic field, RSOC enhances the conductance corresponding to low biasing energies, that is, at energies lesser than the superconducting gap, while the reverse is noted for energies exceeding the magnitude of the gap. Further, there are exciting anomalies noted in the conductance spectrum for the d-wave gap which can be understood by incorporating the interplay between the superconducting gap and the angle of incident of the charge carriers.  相似文献   

8.
李传新  汪萨克  汪军 《中国物理 B》2017,26(2):27304-027304
We theoretically study the differential conductance of a graphene/graphene superconductor junction, where the valley polarization of Dirac electrons is considered in the nonsuperconducting region. It is shown that the subgap conductance will increase monotonically with the valley-polarization strength when the chemical potential μ is near the Dirac point μ≤ 3?(? is the superconducting gap), whereas it will decrease monotonically when μ is far away from the Dirac point, μ≥ 5?.The former case is induced by the specular Andreev reflection while the retro-reflection accounts for the later result. Our findings may shed light on the control of conductance of a graphene superconductor junction by valley polarization.  相似文献   

9.
10.
李晓薇 《物理学报》2007,56(10):6033-6037
用Bogoliubov-de Gennes方程来研究量子线/绝缘层/p波超导体结(q/I/p)中的准粒子输运过程,利用推广的Blonder,Tinkham和Klapwijk模型计算绝对零度和有限温度下q/I/p的一级谐波隧道谱.和量子线/绝缘层/d波超导体结的一级谐波隧道谱不同的是q/I/p的一级谐波隧道谱中存在零偏压电导峰.随着q/I/p中绝缘层的势垒散射增强,q/I/p的一级谐波隧道谱中零偏压电导峰变高.  相似文献   

11.
The semiclassical theory of proximity effects predicts a gap E g~?D/L 2 in the excitation spectrum of a long diffusive superconductor/normal-metal/superconductor (SNS) junction. Mesoscopic fluctuations lead to anomalously localized states in the normal part of the junction.As a result, a nonzero, yet exponentially small, density of states (DOS) appears at energies below E g. In the framework of the supermatrix nonlinear σ model, these prelocalized states are due to the instanton configurations with broken supersymmetry. The exact result for the DOS near the semiclassical threshold is found, provided the dimensionless conductance of the normal part G N is large. The case of poorly transparent interfaces between the normal and superconductive regions is also considered. In this limit, the total number of subgap states may be large.  相似文献   

12.
fine structure was observed in the conductance curve of a tunneling junction composed of a single crystalline Bi2212 and an evaporated SnO2 film. It is similar to those of Bi2212-GaAs mechanical junctions and there is a certain correspondence between the structure and the phonon density of states. Thus the previous conclusion that the structure is due to phonons has been complemented by this work. The energy gap 2 was 57 meV at 13 K and T c was 78 K. 2(0)/k B T c is then 8.3. (T) showed the BCS-like temperature dependence.  相似文献   

13.
When a spin-triplet superconductor is attached to a ferromagnet, the tunneling conductance depends not only on the degree of the spin polarization but also sensitively on the relative angles between the magnetic moment in ferromagnet and the d-vector in spin-triplet superconductor. We study theoretically the tunneling conductance in ferromagnet/triplet superconductors assuming three nodal unitary gap functions, which are promising candidates for the pairing symmetry of Sr2RuO4. Our results suggest that the d-vector direction in Sr2RuO4 may be detected by performing angular dependent tunneling spectroscopy in this hybrid structure. We also show that these three gap functions can be distinguished by their distinctive conductance spectra.  相似文献   

14.
We study ballistic transport properties of graphene with a low concentration of vacancies or adatoms. The conductance of graphene doped to the Dirac point is found to depend on the relative distribution of impurities among different sites of the honeycomb lattice labeled in general by six colors. The conductivity is shown to be sensitive to the crystal orientation if adatom sites have a preferred color. Our theory is confirmed by numerical simulations using recursive Green's functions with no adjustable parameters.  相似文献   

15.
Using tunneling spectroscopy, we have measured the local electron energy distribution function in the normal part of a superconductor-normal metal-superconductor (SNS) Josephson junction containing an extra lead to a normal reservoir. In the presence of simultaneous supercurrent and injected quasiparticle current, the distribution function exhibits a sharp feature at very low energy. The feature is odd in energy and odd under reversal of either the supercurrent or the quasiparticle current direction. The feature represents an effective temperature gradient across the SNS Josephson junction that is controllable by the supercurrent.  相似文献   

16.
The spin-polarized current through a planar double-barrier magnetic tunnel junction has been calculated using the quasi-classical model. The coefficients of electron transmission through the barriers have been calculated in terms of the quantum theory. The dependences of the transmission coefficients, spinpolarized currents, and tunneling magnetoresistance on the applied voltage under resonant conditions have been shown. Under non-resonant conditions, the tunneling magnetoresistance has been compared with the experimental data.  相似文献   

17.
We theoretically studied the spin-dependent charge transport in a two-dimensional electron gas with Dresselhaus spin-orbit coupling (DSOC) and metal junctions. It is shown that the DSOC energy can be directly measured from the tunneling conductance spectrum. We found that spin polarization of the conductance in the propagation direction can be obtained by injecting from the DSOC system. We also considered the effect of the interfacial scattering barrier (both spin-flip and non-spin-flip scattering) on the overall conductance and the spin polarization of the conductance. It is found that the increase of spin-flip scattering can enhance the conductance under certain conditions. Moreover, both types of scattering can increase the spin polarization below the branches crossing of the energy band.  相似文献   

18.
Various types of topological defects in graphene are considered in the framework of the continuum model for long-wavelength electronic excitations, which is based on the Dirac–Weyl equation. The condition for the electronic wave function is specified, and we show that a topological defect can be presented as a pseudomagnetic vortex at the apex of a graphitic nanocone; the flux of the vortex is related to the deficit angle of the cone. The cases of all possible types of pentagonal defects, as well as several types of heptagonal defects (with the numbers of heptagons up to three, and six) are analyzed. The density of states and the ground state charge are determined.  相似文献   

19.
Spin-polarized transports of relativistic electrons through graphene-based ferromagnet/insulator/ferromagnet (FG/IG/FG) single junctions have been investigated theoretically. Large oscillating tunnel magnetoresistance (TMR) has been found in monolayer and bilayer FG/IG/FG junctions. The oscillating amplitudes of TMR do not decrease with the increase of the thickness and the height of barrier, in contrast to the exponential decay in conventional ferromagnet/insulator/ferromagnet single junction. The physical origin for such a phenomenon has also been analyzed. It is anticipated to apply such a phenomenon to design the spin-polarized electron device based on the graphene materials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号