首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduction of an oxide in hydrogen is a method frequently employed in the preparation of active catalysts and electronic devices. Synchrotron-based time-resolved X-ray diffraction (XRD), X-ray absorption fine structure (NEXAFS/EXAFS), photoemission, and first-principles density-functional (DF) slab calculations were used to study the reaction of H(2) with nickel oxide. In experiments with a NiO(100) crystal and NiO powders, oxide reduction is observed at atmospheric pressures and elevated temperatures (250-350 degrees C), but only after an induction period. The results of in situ time-resolved XRD and NEXAFS/EXAFS show a direct NiO-->Ni transformation without accumulation of any intermediate phase. During the induction period, surface defect sites are created that provide a high efficiency for the dissociation of H(2). A perfect NiO(100) surface, the most common face of nickel oxide, exhibits a negligible reactivity toward H(2). The presence of O vacancies leads to an increase in the adsorption energy of H(2) and substantially lowers the energy barrier associated with the cleavage of the H-H bond. At the same time, adsorbed hydrogen can induce the migration of O vacancies from the bulk to the surface of the oxide. A correlation is observed between the concentration of vacancies in the NiO lattice and the rate of oxide reduction. These results illustrate the complex role played by O vacancies in the mechanism for reduction of an oxide. The kinetic models frequently used to explain the existence of an induction time during the reduction process can be important, but a more relevant aspect is the initial production of active sites for the rapid dissociation of H(2).  相似文献   

2.
The adsorption of atomic hydrogen on a single crystal ZnO(1010) surface has been studied by scanning tunneling microscopy (STM) under ultrahigh vacuum conditions at room temperature and at elevated temperatures. High resolution STM images indicate that a well-ordered (1x1) H adlayer is formed on the ZnO(1010) surface. The STM data strongly indicate that the hydrogen adsorbs on top of the oxygen atoms forming hydroxyl species. Scanning tunneling spectroscopy (STS) studies reveal a H atom induced metallization at room temperature. In contrast to the clean surface for the hydrogen-covered surface distinct defects structures consisting of missing O and Zn atoms could be identified.  相似文献   

3.
Hydrogen adsorption on Pd/Ce(0.8)Zr(0.2)O(2) was studied by temperature-programmed reduction, volumetric measurements and IR spectroscopy. Hydrogen uptake and reduction rate at 353 K are strongly dependent on the hydrogen pressure. At relatively high hydrogen partial pressure, reduction involves PdO, the surface and a significant fraction of the bulk of the ceria based oxide. Formation of oxygen vacancies even at low temperature (<373 K) is observed. The hydrogen adsorption process is mainly irreversible, as is shown by an increase in the (2)F(5/2)-->(2)F(7/2) electronic transition of Ce(3+) with hydrogen pressure and surface dehydroxylation. This "severe" reduction has a negative effect on the subsequent hydrogen adsorption capability. The decrease of hydrogen uptake capacity and rate during adsorption can be associated with the partial loss of superficial OH and the presence of Ce(3+), which deactivates Pd electronically.  相似文献   

4.
Reduction of Pd° and decomposition of palladium oxide supported on γ-alumina were studied at atmospheric pressure under different atmospheres (H(2), CH(4), He) over a 4 wt% Pd/Al(2)O(3) catalyst (mean palladium particle size: 5 nm with 50% of small particles of size below 5 nm). During temperature programmed tests (reduction, decomposition and oxidation) the crystal domain behaviour of the PdO/Pd° phase was evaluated by in situ Raman spectroscopy and in situ XRD analysis. Under H(2)/N(2), the reduction of small PdO particles (<5 nm) occurs at room temperature, whereas reduction of larger particles (>5 nm) starts at 100 °C and is achieved at 150 °C. Subsequent oxidation in O(2)/N(2) leads to reoxidation of small crystal domain at ambient temperature while oxidation of large particles starts at 300 °C. Under CH(4)/N(2), the small particle reduction occurs between 240 and 250 °C while large particle reduction is fast and occurs between 280 and 290 °C. Subsequent reoxidation of the catalyst reduced in CH(4)/N(2) shows that small and large particle oxidation of Pd° starts also at 300 °C. Under He, no small particle decomposition is observed probably due to strong interactions between particles and support whereas large particle reduction occurs between 700 and 750 °C. After thermal decomposition under He, the oxidation starts at 300 °C. Thus, the reduction phenomenon (small and large crystal domain) depends on the nature of the reducing agent (H(2), CH(4), He). However, whatever the reduction or decomposition treatment or the crystal domain, Pd° oxidation starts at 300 °C and is completed only at temperatures higher than 550 °C. Under lean conditions, with or without water, the palladium consists of reduced sites of palladium (Pd°, Pd(δ+) with δ < 2 or PdO(x) with x < 1) randomly distributed on palladium particles.  相似文献   

5.
The interaction between H(2) molecules and boron nitride (BN) single-walled nanotubes with BN divacancies is investigated with density-functional theory. Our calculations reveal that H(2) molecules adsorb physically outside defective BN nanotubes, and cannot enter into BN nanotubes through bare BN divacancies because the energy barrier is as high as 4.62 eV. After the defects are saturated by hydrogen atoms, the physisorption behavior of H(2) molecules is not changed, but the energy barrier of H(2) molecules entering into BN nanotubes through the defects is reduced to 0.58 eV. This phenomenon is ascribed to hydrogen saturation induced reduction of electrostatic potential around the defects.  相似文献   

6.
Out of many applications of hydrogen plasma, reduction of metal oxides is an important one. The reduction can be carried out using carbon or hydrogen. While carrying out the reduction of hematite (Fe2O3) in hydrogen plasma, an attempt was made to characterize the hydrogen plasma by optical emission spectroscopy. The spectroscopic results provide some new and useful information. In addition to the hydrogen emission lines, two prominent lines at 589 and 589.6 nm were observed. These two lines are confirmed to be sodium D1 and D2 (Na D lines) by comparing with a low pressure sodium vapour lamp (LPSVL). The source of the trace amount of sodium is also confirmed to be from the metal oxide sample as an impurity. These lines are found to be very sensitive to various process parameters such as gas flow rate, microwave power, and reduction chamber pressure. The temporal variation of these two Na D lines also shows a characteristic trend during metal oxide reduction in hydrogen plasma. The weight loss and the X-ray diffraction analyses of reduced Fe2O3 sample for different time duration provides the evidence of correlation with Na D lines’ intensity trend. This trend can be used to monitor the state and completion of hydrogen plasma based reduction reaction. In processes where Na is not associated with metal oxide, trace amount of Na in its molecular form such as NaOH can be introduced for monitoring the plasma process parameters as well as the plasma based reduction process.  相似文献   

7.
Time-resolved X-ray diffraction, X-ray absorption fine structure, and first-principles density functional calculations were used to investigate the reaction of CuO and Cu(2)O with H(2) in detail. The mechanism for the reduction of CuO is complex, involving an induction period and the embedding of H into the bulk of the oxide. The in-situ experiments show that, under a normal supply of hydrogen, CuO reduces directly to metallic Cu without formation of an intermediate or suboxide (i.e., no Cu(4)O(3) or Cu(2)O). The reduction of CuO is easier than the reduction of Cu(2)O. The apparent activation energy for the reduction of CuO is about 14.5 kcal/mol, while the value is 27.4 kcal/mol for Cu(2)O. During the reduction of CuO, the system can reach metastable states (MS) and react with hydrogen instead of forming Cu(2)O. To see the formation of Cu(2)O, one has to limit the flow of hydrogen, slowing the rate of reduction to allow a MS --> Cu(2)O transformation. These results show the importance of kinetic effects for the formation of well-defined suboxides during a reduction process and the activation of oxide catalysts.  相似文献   

8.
Molybdenum disulfide (MoS2) has been regarded as a favorable photocatalytic co‐catalyst and efficient hydrogen evolution reaction (HER) electrocatalyst alternative to expensive noble‐metals catalysts, owing to earth‐abundance, proper band gap, high surface area, and fast electron transfer ability. In order to achieve a higher catalytic efficiency, defects strategies such as phase engineering and vacancy introduction are considered as promising methods for natural 2H‐MoS2 to increase its active sites and promote electron transfer rate. In this study, we report a new two‐step defect engineering process to generate vacancies‐rich hybrid‐phase MoS2 and to introduce Ru particles at the same time, which includes hydrothermal reaction and a subsequent hydrogen reduction. Compositional and structural properties of the synthesized defects‐rich MoS2 are investigated by XRD, XPS, XAFS and Raman measurements, and the electrochemical hydrogen evolution reaction performance, as well as photocatalytic hydrogen evolution performance in the ammonia borane dehydrogenation are evaluated. Both catalytic activities are boosted with the increase of defects concentrations in MoS2, which ascertains that the defects engineering is a promising route to promote catalytic performance of MoS2.  相似文献   

9.
A Ru-La/ZrO2 catalyst was prepared by the precipitation method, in which Ru was an active component, La was a promoter and ZrO2 was a dispersant. Comparing with the catalyst prepared by the chemical reduction method, the Ru-La/ZrO2 exhibited higher activity and better selectivity. At 140 ℃ and hydrogen pressure of 5 MPa, the C6H10 selectivity reached 70% at a C6H6 conversion of 35% for a reaction time was 5 min and the total La/Ru loading was 10%. Textural parameters of the catalyst were obtained by physical adsorption, BET surface area and specific pore volume measurements. The catalyst sample gave a BET area of 41 m2/g and a specific pore volume of 1.1 cm^3/g, and the most probable pore distribution was located at 5 to 10 nm. H2-TPR measurements showed that ruthenium oxide could be reduced to its metallic state at about 403 K. XRD determinations indicated that ruthenium and lanthanum were highly dispersed on the zirconia. A significant advantage of the Ru-La/ZrO2 catalyst is that it can be used directly in its unreduced state for the selective hydrogenation of benzene.  相似文献   

10.
采用不同方法、不同负载量、不同焙烧温度制备CeO_2改性的SiO_2-CuO-CeO_2复合氧化物催化剂,并对其进行X射线衍射分析、扫描式电子显微镜、TG-DSC、N_2吸附-脱附和H_2-TPR等表征.在温和条件(65℃、常压)下,以过氧化氢为氧化剂,乙腈为溶剂,苯并噻吩(BT)为模型硫化物,考察SiO_2-CuO-CeO_2复合氧化物催化剂的氧化脱硫性能,确定复合氧化物的最佳制备工艺条件.结果表明,适量的添加CeO_2可以提高CuO在SiO_2上的分散度、比表面积和孔径,提高复合氧化物的活性;溶胶-凝胶法制备的SiO_2-0.1CuO-0.02CeO_2复合氧化物,在500℃下焙烧,催化剂活性最高,脱硫率最高为81.6%.催化剂的重复使用5次,脱硫率仍可达到60.0%.  相似文献   

11.
1. Introduction Cyclohexene as an important intermediate prod- uct is widely used in chemical productions. The process of selective hydrogenation of benzene to cyclo- hexene has been an important research topic in green chemistry owing to its atomic economy and clean production [1]. In order to attain greater economic benefits, researchers are searching for a new catalytic system that is high in activity and selectivity, simple in technology, and low in cost. In this respect, some progresses h…  相似文献   

12.
We succeeded in studying the mechanism of hydrogen added carbothermic reduction process of iron-manganese oxide by means of the new technique, simultaneous measurement of evolved gas analysis (EGA) and humidity sensor (HS). Water vapor evolved by the reduction with hydrogen can be detected by HS. Other gas was detected by TCD. Without carbon, the hydrogen reduction process was followed to the formation of the intermediate product between MnO and FeO and finally reduction to the mixture of MnO and Fe. With carbon, the intermediate products between MnO and FeO was formed at about 780 K. The methane was formed in higher temperature than 1073 K and the reduction with carbon proceeded mainly. At higher temperatures, methane decomposed to yield nascent carbon that tended to result in the acceleration of the reduction rate with carbon. The study is concerned with the mechanism of the hydrogen reduction of MnFe2O4 and the effect of without and with carbon on this reduction by means of combining EGA and HS. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
In situ scanning tunneling microscopy (STM) and cyclic voltammetry (CV) were employed to examine the underpotential deposition (UPD) of cadmium on a rhodium(111) electrode in sulfuric and hydrochloric acids. The (bi)sulfate and chloride anions in the electrolytes played a main role in controlling the number and arrangement of Cd adatoms. Deposition of Cd along with hydrogen adsorption occurred near 0.1 V (vs reversible hydrogen electrode) in either 0.05 M H2SO4 or 0.1 M HCl containing 1 mM Cd(ClO4)2. These coupled processes resulted in an erroneous coverage of Cd adatoms. The process of Cd deposition shifted positively to 0.3 V and thus separated from that of hydrogen in 0.05 M H2SO4 containing 0.5 M Cd2+. The amount of charge (80 microC/cm2) for Cd deposition in 0.5 M Cd2+ implied a coverage of 0.17 for the Cd adatoms, which agreed with in situ STM results. Regardless of [Cd2+], in situ STM imaging revealed a highly ordered Rh(111)-(6 x 6)-6Cd + HSO4- or SO42- structure in sulfuric acid,. In hydrochloric acid, in situ STM discerned a (2 x 2)-Cd + Cl structure at potentials where Cd deposition commenced. STM atomic resolution showed roughly one-quarter of a monolayer of Cd adatoms were deposited, ca. 50% more than in sulfuric acid. Dynamic in situ STM imaging showed potential dependent, reversible transformations between the (6 x 6) Cd adlattices and (square root 3 x square root 7)-(bi)sulfate structure, and between (2 x 2) and (square root 7 x square root 7)R19.1 degrees -Cl structures. The fact that different Cd structures observed in H2SO4 and HCl entailed the involvement of anions in Cd deposition, i.e. (bi)sulfate and chloride anions were codeposited with Cd adatoms on Rh(111).  相似文献   

14.
Understanding oxygen reduction, key to much of electrochemical energy transformation technology, crucially requires exploration of the role of hydrogen peroxide as a possible intermediate especially on catalysts such as Pt which can bring about the 4e reduction of O2 to water. We reveal that at the single nanoparticle scale the direct platinum catalysed reduction of hydrogen peroxide is found – even at high overpotentials – not to be controlled by the rate mass-transport of the reagents to the interface but by a surface limited process. Further under alkaline (pH 12.3) and near mass-transport free conditions, the single nanoparticle hydrogen peroxide reduction rate goes through a maximum at potentials comparable to the surface deposition of hydrogen (Hupd) with the highest reaction rate occurring when the surface is partially covered in hydrogen.

At the single platinum nanoparticle scale the hydrogen peroxide reduction reaction is a surface limited process.  相似文献   

15.
本文通过控制电位还原氧化石墨烯,可控制备不同含氧官能团的石墨烯纳米材料。以多巴胺、[Fe(CN)_6]~(3-)、NADH为电活性探针,研究了石墨烯表面含氧官能团、缺陷、表面荷电性质以及导电性等对石墨烯电催化性能的影响。研究发现,低还原程度的氧化石墨烯表面含有大量缺陷和丰富的官能团,能够促进多巴胺自催化反应,也有利于K_3[Fe(CN)_6]在电极表面的电子转移;随着氧化石墨烯还原程度提高,其导电性逐渐得到改善,且其表面官能团和缺陷位点数量逐渐减少,对NAD~+的吸附变弱,因而能促进NADH发生电催化氧化。  相似文献   

16.
The formation of MoO(3) and its spontaneous spread over an Au (111) surface have been studied by X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Metallic Mo clusters grown by Mo(CO)(6) chemical vapor deposition (CVD) have a constant size independent of the Mo coverage. Molecular oxygen does not react with low coverage of Mo, probably due to the encapsulation of the Mo clusters by Au. At higher coverage, O(2) reacts with Mo, partially transforming the metallic Mo to Mo(4+). NO(2) can oxidize Mo efficiently to Mo(6+) and Mo(5+) species at all coverages investigated. XPS experiments show that the integrated intensity of the Mo 3d peaks increases by a factor of 2 upon the oxidation, suggesting the spread of the MoO(3) over the surface. The STM study confirms this suggestion and provides the mechanistic details of the spreading. Mo oxide forms ramified two-dimensional islands covering a substantially larger fraction of the Au surface than the metallic Mo. We propose that the morphology change starts with the diffusion of oxide clusters (ramified-cluster-diffusion mechanism), followed by their breakdown to highly disordered two-dimensional islands of molecular MoO(3).  相似文献   

17.
The second reduction step of Eu(III), Yb(III) and Sm(III) in 0.04 M tetramethylammonium perchlorate in the pH range 1.8–7 was investigated by cyclic voltammetry and d.c. polarography. The proposed reaction scheme at large hydrogen ion/lanthanide ion concentration ratios involves the reduction of the lanthanide(II) ion to the metallic state accompanied by a surface catalytic reaction in which the reactant is regenerated and also hydroxyl ions are formed which induces the precipitation of lanthanide(II) hydrous oxide on the electrode surface. This lanthanide(II) hydroxide is reduced at more negative potentials than the hydrated lanthanide(II) species. At lower hydrogen ion/lanthanide ion concentration ratios a preceding chemical reaction, probably involving hydrolyzed lanthanide(II) species, becomes rate determining.  相似文献   

18.
This paper is the first in a series describing the in situ surface characterization of platinum electrodes using H and Cu deposited at underpotentials. The surface of a Pt(100) electrode pretreated by simple flame annealing and quenching in aqueous sulfuric acid is shown to contain a high concentration of defects such as vacancies and self-adsorbed Pt atoms. Adsorbed hydrogen is more strongly bound at these defects than on a uniform Pt(100) surface. Potential cycling in 1 M HCl produces a higher concentration of defects, while oxide formation and reduction in 0.5 M H2SO4 has the opposite effect. The nature of (100)-like sites at a polycrystalline platinum electrode is also discussed.  相似文献   

19.
This paper reports investigations on the mechanism of the open circuit (OC) reduction of platinum oxide layers by hydrogen in aqueous sulfuric acid. Special attention was given to the conditions of the oxide layer formation and the anodic oxidation of hydrogen thereupon. A twin-cell technique was developed which allows the instantaneous rate of the OC reduction to be determined. The experimental results show that the dissociative adsorption of hydrogen is the rate-determining step of the process and that the OC reduction follows, an island mechanism. Because of the time-dependent alteration of the oxide layer structure, the formation conditions affect the instantaneous rate of the OC reduction as well as the duration of the total reduction of the oxide layer.  相似文献   

20.
The reduction of bulk and supported copper oxide was investigated using Constant Rate-Temperature Programmed Reduction (CR-TPR) and conventional linear heating rate TPR. Linear heating profiles indicated that the reduction of supported samples was more facile than that of the bulk oxide. CRTA results revealed that both supported and bulk oxide samples were reduced via a mechanism involving a nucleation step and/or auto-catalysis. The increased reducibility of the supported samples is attributed to a higher dispersion which provides a larger reactive surface area and a high concentration of defects at which reduction is initiated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号