共查询到20条相似文献,搜索用时 93 毫秒
1.
富勒烯合成化学研究进展 总被引:2,自引:0,他引:2
富勒烯是一类由12个五元环和若干六元环组成的笼状分子, 自20世纪80年代中期被发现以来就以其独特的结构和新奇的性质而成为科学界研究的热点, 25年来, 无论在基础研究还是在实际应用领域都有了长足的进步, 人们在发展富勒烯合成新方法和寻找富勒烯新结构方面做了大量的工作。本文对富勒烯的各种宏量合成方法进行了回顾, 并概述了迄今已发表的60余种富勒烯新结构,包括各种富勒烯空笼、内嵌富勒烯、富勒烯笼外修饰衍生物及氮杂富勒烯等结构。 相似文献
2.
3.
4.
5.
回顾了十年来关于笼内金属富勒烯的研究工作,详细介绍了笼内金属富勒烯的各种合成方法、提取手段以及分离方法,阐明了笼内金属富勒烯的电子结构并给出了各类方法对其结构、性质研究取得的成果,最后指出了笼内金属富勒烯的研究前景与应用潜力。 相似文献
6.
我国金属氢化物化学研究 总被引:6,自引:0,他引:6
综述了我国金属氢化物化学的发展。我国是从50年代中期开始研究离子型金属氢化物的合成、性能和应用的,发展了一些合成方法,获得了多项中国专利。储氢合金的化学研究是70年代中期开始的。在储氢合金的化学合成、吸放氢热力学与动力学、储氢合金氢化催化和电化学方面都有较深入的研究,特别是储氢电极合金电化学及其在Ni/MH可逆电池中的应用研究,在国家863计划强有力的支持下,某些方面进入了国际先进行列。 相似文献
7.
8.
9.
全无机富勒类及骨架掺杂富勒烯的研究,是当前富勒烯研究中的热点课题之一,由于全无机富勒烯及骨架掺杂富勒烯在分子结构,电子结构及电、磁学性质上都有独到之处,对它们的研究,不仅在理论上有重大意义,而且在应用上也有望获得新型功能材料,本文对全机无富勒烯及骨架掺杂富勒烯的研究进行了评述与分析。 相似文献
10.
11.
B. P. Tarasov V. N. Fokin A. P. Moravsky Yu. M. Shul'ga 《Russian Chemical Bulletin》1998,47(10):2037-2040
The interaction of crystalline fullerence C60 with highly pure hydrogen, which was evolved from hydrides of intermetallic compounds of rear-earth metals and nickel, was
studied. Crystalline fullerene hydrides containing from 10 to 30 hydrogen atoms per fullerene molecule were synthesized (1.0–2.5
MPa and 300–673 K). Crystalline hydrides release hydrogen at 800 K with retention of the structure of the fullerene molecule.
Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2093–2096, October, 1998. 相似文献
12.
13.
液体有机氢化物储氢技术利用不饱和液态芳烃和对应环烷烃之间的加\脱氢反应,不仅可用于长周期的季节性储氢,还可用于远距离输氢,以解决地区间能源分布不均的问题。本文分析了该技术的基本原理和特点,并着重就其中的脱氢反应,从催化剂的开发、催化反应机理以及反应模式等层面,进行了分析讨论。关于催化剂,主要从催化剂的活性组分、颗粒分散度、载体种类、孔结构和表面性质与催化活性、结焦失活和耐硫性之间关系的关系进行了分析。关于反应模式,重点讨论了过热液膜态反应、非稳态脉冲喷射进料反应和膜分离反应等几种有利于改善传热传质条件、打破平衡限制的催化脱氢反应模式。并展望了液体有机氢化物储氢的研究和发展方向。 相似文献
14.
15.
Ammonia is feeding nearly half the world population and also holds the promise as a carbon‐free energy carrier. The development of ammonia synthesis and decomposition processes under milder conditions is a grand challenge for more than a century. Increasing effort is devoted to this area in recent years and encouraging progress has been achieved. In this paper, we summarize our recent research using alkali or alkaline earth metal amides, imides and hydrides for ammonia synthesis and decomposition. These materials could serve as either indispensible component of active center in thermal catalytic process or nitrogen carrier for chemical looping ammonia synthesis. The synergy of amide, imide, or hydride with transition metals enables ammonia synthesis or decomposition with unprecedented high efficiency under milder reaction conditions, and thus opens an avenue to advance the chemistry or catalysis of N2 fixation reaction. The compositional and structural diversity of the amide, imide and hydride materials provides plenty of opportunity and potential for further exploration and optimization. 相似文献
16.
Dragoe N. Nakahara K. Xiao L. Shimotani H. Kitazawa K. 《Journal of Thermal Analysis and Calorimetry》1999,56(1):167-173
The thermal decomposition of methano-fullerene derivatives such as ethoxycarbonyl methano[60] fullerene and various isomers
of bis-(ethoxycarbonyl methano)[60] fullerene leads to new fullerene derivatives, which have been preliminary characterized.
The analysis of separated species was performed by UV-VIS, IR, H- and C-NMR, STM, FAB, LDI and MALDI-TOF MS spectroscopy.
One of the isolated phases is a C122 molecule with a dumbbell-like structure.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
17.
18.
19.
20.
Dr. Debabrata Mukherjee Prof. Dr. Jun Okuda 《Angewandte Chemie (International ed. in English)》2018,57(6):1458-1473
Solid magnesium hydride [MgH2]∞ has been pursued as a potential hydrogen‐storage material. Organic chemists were rather interested in soluble magnesium hydride reagents from mid‐20th century. It was only in the last two decades that molecular magnesium hydride chemistry received a major boost from organometallic chemists with a series of structurally well‐characterized examples that continues to build a whole new class of compounds. More than 40 such species have been isolated, ranging from mononuclear terminal hydrides to large hydride clusters with more than 10 magnesium atoms. They provide not only insights into the structure and bonding of Mg?H motifs, but also serve as models for hydrogen‐storage materials. Some of them are also recognized to participate in catalytic transformations, such as hydroelementation. Herein, an overview of these molecular magnesium hydrides is given, focusing on their synthesis and structural characterization. 相似文献