首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Perjéssy 《Tetrahedron》1973,29(20):3207-3212
The use of the improved Seth-Paul-Van Duyse equation (SPVDE) provides a new statistically significant method for determination of transmissive factors of polar effects for various bridge groups. The method was applied to the CO stretching frequencies of s-cis and s-trans conformers of 98 R1CHCHCOR2 compounds. The transmissive factors for CHCH group in both conformations s-cis and s-trans have been calculated with an accuracy about of one order higher than found by using the methods described earlier. The applicability of the improved SPVDE to the 137 CO stretching frequencies of various R1CHCHCOR2 compounds has been proved.  相似文献   

2.
We have measured the CH stretching vibrational spectrum of ethene gas in the regions corresponding to 1-5 quanta in the CH stretching vibration with Fourier transform infrared and conventional absorption spectroscopy and have determined the corresponding oscillator strengths. We have calculated the CH stretching vibrational oscillator strengths for a series of alkenes: ethene, propene, 1,3-butadiene, cis-2-butene, and trans-2-butene. The CH stretching intensities are calculated with a simple Morse oscillator local mode model for CH groups and with the harmonically coupled anharmonic oscillator local mode model for CH2 and CH3 groups. The local mode parameters, frequencies, and anharmonicities are obtained from experiments. The harmonic coupling coefficients and the dipole moment functions are calculated with a range of ab initio methods. These include self-consistent-field Hartree-Fock, density functional, correlated, and multireference theories, combined with basis sets ranging from double- to quadruple-zeta quality augmented with polarization and diffuse functions. Variation in calculated oscillator strengths with the choice of ab initio method is systematically studied and compared with observed intensities. From this comparison between the calculated and observed values, we can quantitatively understand the relative usefulness of various ab initio dipole moment functions in calculations of vibrational oscillator strength for alkenes.  相似文献   

3.
The IR spectrum of cis-(CH(3))(2)Au(O,O'-acac) has been reassigned by comparing frequencies for cis-(CH(3))(2)Au(O,O'-acac) and cis-(CD(3))(2)Au(O,O'-acac), and by analysis of the DFT-calculated normal modes and their frequencies for the isolated molecules. The vibrational intensity in the C-H stretching region arises almost entirely from the cis-(CH(3))(2)Au fragment, while the methyl deformation intensity is largely of acetylacetonato ligand origin. A low frequency mode in the C-H stretching region is the first overtone of the delta(a)(CH(3)) mode of cis-(CH(3))(2)Au. The Au-C stretching modes are affected by deuteration of the cis-(CH(3))(2)Au fragment, while the Au-O stretching modes are not.  相似文献   

4.
CH stretches in hydrocarbon cations often shift to lower frequencies relative to neutral molecules, because they do not have sufficient electrons to give every bond an electron pair. A parallel effect in negatively charged species has not been previously observed. Here we show that CH bond weakening occurs in alkoxide anions as a consequence of hyperconjugation. The reasoning differs somewhat from the case of positively charged ions, but the net effect is the same: to lower CH stretching frequencies by hundreds of wavenumbers.  相似文献   

5.
We experimentally and theoretically examined the conformation, pH, and temperature dependence of the CH2 stretching frequencies of glycine (gly) in solution and in the crystalline state. To separate the effects of the amine and carboxyl groups on the CH2 stretching frequencies we examined the Raman spectra of 2,2,2-d3-ethylamine (CD3-CH2-NH2) and 3,3,3-d3-propionic acid (CD3-CH2-COOH) in D2O. The symmetric (nusCH2) and asymmetric (nuasCH2) stretching frequencies show a significant dependence on gly conformation. We quantified the relation between the frequency splitting (Delta = nuasCH2-nusCH2) and the xi angle which determines the gly conformational geometry. This relation allows us to determine the conformation of gly directly from the Raman spectral frequencies. We observe a large dependence of the nusCH2 and nuasCH2 frequencies on the ionization state of the amine group, which we demonstrate theoretically results from a negative hyperconjugation between the nitrogen lone pair and the C-H antibonding orbitals. The magnitude of this effect is maximized for C-H bonds trans to the nitrogen lone pair. In contrast, a small dependence of the CH2 stretching frequencies on the carboxyl group ionization state arises from delocalization of electron density from carboxyl oxygen to C-H bonding orbitals. According to our experimental observations and theoretical calculations the temperature dependence of the nusCH2 and nuasCH2 of gly is due to the change in the hydrogen-bonding strength of the amine/carboxyl groups to water.  相似文献   

6.
Infrared spectra of mass-selected F- -(CH4)n (n = 1-8) clusters are recorded in the CH stretching region (2500-3100 cm-1). Spectra for the n = 1-3 clusters are interpreted with the aid of ab initio calculations at the MP2/6-311++G(2df 2p) level, which suggest that the CH4 ligands bind to F- by equivalent, linear hydrogen bonds. Anharmonic frequencies for CH4 and F--CH4 are determined using the vibrational self-consistent field method with second-order perturbation theory correction. The n = 1 complex is predicted to have a C3v structure with a single CH group hydrogen bonded to F-. Its spectrum exhibits a parallel band associated with a stretching vibration of the hydrogen-bonded CH group that is red-shifted by 380 cm-1 from the nu1 band of free CH4 and a perpendicular band associated with the asymmetric stretching motion of the nonbonded CH groups, slightly red-shifted from the nu3 band of free CH4. As n increases, additional vibrational bands appear as a result of Fermi resonances between the hydrogen-bonded CH stretching vibrational mode and the 2nu4 overtone and nu2+nu4 combination levels of the methane solvent molecules. For clusters with n < or = 8, it appears that the CH4 molecules are accommodated in the first solvation shell, each being attached to the F- anion by equivalent hydrogen bonds.  相似文献   

7.
Different cysteamine (H2N-CH2-CH2-SH) ionization forms have been studied by polarized Raman spectroscopy in solutions prepared with H2O and D2O and by DFT calculations at the B3LYP/6-31++G(d,p) level. To account for solvation effects, we employed the integral equation formalism polarizable continuum model (IEFPCM) option and explicit water molecules. Calculated relative energies and Raman spectra revealed that gauche rotamers around the C-C bond are the most stable conformers in solution. The experimental pKa values and Raman spectra of various ionization forms were best predicted by using a model with three explicit water molecules and the IEFPCM option. In general, the use of IEFPCM tends to lower the calculated frequencies for a few bands, but in some cases (S-H stretching mode) this effect is expressed very strongly. Potential energy distribution (PED) analysis of gauche conformers of various cysteamine ionization forms provided the possibility of discriminating spectroscopically methylene groups adjacent to sulfur, (CH2)S, and nitrogen, (CH2)N, sites. In general, stretching and scissoring modes as well as wagging and twisting vibrations of the (CH2)N group were found to be at higher frequencies. The influence of ionization of SH and NH2 groups on the vibrational spectrum is discussed, and Raman markers for further amine group ionization studies are suggested.  相似文献   

8.
The present work reports observations of the 4nu(1) and 4nu(2) O-H stretching transitions in glycolic acid, CH(2)OHCOOH, using a highly sensitive cavity ring-down spectrometer. Experimental and theoretical values for the harmonic frequencies and anharmonic constants of both O-H stretching transitions were extracted and are compared with theoretical calculations in the literature. Calculations of anharmonic frequencies, intensities, and relative energies have been performed and are presented for three conformers of glycolic acid. In the presence of water, an interesting broad spectral feature appeared underneath 4nu(1) and 4nu(2). New calculations for harmonic frequencies, intensities, and relative energies of four CH(2)OHCOOH-H(2)O complexes are reported to aid in understanding the observed spectrum. This work suggests that the perturbations are caused by intermolecular hydrogen bonding of glycolic acid with one or more water molecules.  相似文献   

9.
The gas-phase infrared absorption spectrum of acrolein is observed from 4000 to 400 cm−1 with a resolution of 0.06 or 0.03 cm−1. The previously unlocated vinyl CH stretching band is observed at 3069 cm−1 and its CH out-of-plane modes whose assignments have been in confusion are investigated in detail. The mode assignments of some other bands are revised on the basis of the calculated frequencies and relative intensities by an ab initio MO method.  相似文献   

10.
Ab initio calculations were used to analyze interactions of BH4 ? with 1?C4 molecules of H2O at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) computational levels. The negative cooperativity for dihydrogen bond clusters containing H2O···H2O hydrogen bonds is more remarkable. The negative cooperativity is increased with increasing the size and also the number of hydrogen bonds in the cluster. The B?CH stretching frequencies show blue shifts with respect to cluster formation. Also greater blue shift of stretching frequencies where predicted for B?CH bonds which did not contribute in dihydrogen bonding with water molecules. The structures obtained have been analyzed with the Atoms in Molecules (AIM) methodology.  相似文献   

11.
Hexakis(dimethyl sulfoxide)scandium(III) iodide, [Sc(OS(CH(3))(2))(6)]I(3) contains centrosymmetric hexasolvated scandium(III) ions with an Sc-O bond distance of 2.069(3) angstroms. EXAFS spectra yield a mean Sc-O bond distance of 2.09(1) angstroms for solvated scandium(III) ions in dimethyl sulfoxide solution, consistent with six-coordination. Raman and infrared absorption spectra have been recorded, also of the deuterated compound, and analysed by means of normal coordinate methods, together with spectra of dimethyl sulfoxide. The effects on the vibrational spectra of the weak intermolecular C-H...O interactions and of the dipole-dipole interactions in liquid dimethyl sulfoxide have been evaluated, in particular for the S-O stretching mode. The strong Raman band at 1043.6 cm(-1) and the intense IR absorption at 1062.6 cm(-1) have been assigned as the S-O stretching frequencies of the dominating species in liquid dimethyl sulfoxide, evaluated as centrosymmetric dimers with antiparallel polar S-O groups. The shifts of vibrational frequencies and force constants for coordinated dimethyl sulfoxide ligands in hexasolvated trivalent metal ion complexes are discussed. Hexasolvated scandium(iii) ions are found in dimethyl sulfoxide solution and in [Sc(OSMe(2))(6)]I(3). The iodide ion-dipole attraction shifts the methyl group C-H stretching frequency for (S-)C-H...I(-) more than for the intermolecular (S-)C-H...O interactions in liquid dimethyl sulfoxide.  相似文献   

12.
The hydrogen-bonded clusters of 2-fluoropyridine with water were studied experimentally in a supersonic free jet and analyzed with molecular orbital calculations. The IR spectra of 2-fluoropyridine-(H2O)(n) (n = 1 to 3) clusters were observed with a fluorescence detected infrared depletion (FDIR) technique in the OH and CH stretching vibrational regions. The frequencies of OH stretching vibrations show that water molecules bond to the nitrogen atom of 2-fluoropyridine in the clusters. The hydrogen-bond formation between aromatic CH and O was evidenced in the 1:2 and 1:3 clusters from the experimental and calculated results. The overtone vibrations of the OH bending mode in hydrogen-bonded water molecules appear in the IR spectra, and these frequencies become higher with the increase of the number of water molecules in the clusters. The band structure of the IR spectra in the CH stretching region changes depending on the number of coordinating water molecules.  相似文献   

13.
本文研究了取代苯甲酸的羰基和羟基伸缩振动频率与苯环上取代基的Hammett常数σ值之间的线性关系;双(η~5-环戊二烯基)-双(取代苯甲酸)钼(Ⅳ)配合物[Cp_2Mo(O_2CC_6H_4X)_2](Cp=环戊二烯基;X=m-或p-NO_2、F、Cl、Bf、I、CH3、OCH_3、H)的羰基伸缩振动频率与取代基的σ值之间的线性关系,及Cp_2Mo(O_2CC_6H_4X)_2中苯甲酸根的配位方式。本文还提供了一个利用分辨率较低的仪器,比较精确地读出峰位的简便方法。  相似文献   

14.
Binary and ternary mixtures of alpha-tocopherol (alphaT), cholesterol and dipalmitoyl phosphatidylcholine (DPPC) in the form of multilamellar liposomes have been investigated by Fourier Transform Infrared Spectroscopy (FTIR). Investigation of frequencies, bandwidths and band shapes of CH(2) stretching and scissoring bands indicate that the effect of alphaT is dominant in comparison with cholesterol and alphaT decreases the interaction of cholesterol with phospholipid membranes.  相似文献   

15.
16.
The vibrational absorption spectra and vibrational circular dichroism (VCD) spectra of both enantiomers of 4-X-[2.2]paracyclophanes (X = COOCD3, Cl, I) have been recorded for a few regions in the range of 900-12000 cm(-1). The analysis of the VCD spectra for the two IR regions, 900-1600 cm(-1) and 2800-3200 cm(-1), is conducted by comparing with DFT calculations of the corresponding spectra; the latter region reveals common motifs of vibrational modes for the three molecules for aliphatic CH stretching fundamentals, whereas in the mid-IR region, one is able to identify specific signatures arising from the substituent groups X. In the CH stretching region between 2900 and 2800 cm(-1), we identify and interpret a group of three IR VCD bands due to HCH bending overtone transitions in Fermi resonance with CH stretching fundamental transitions. The analysis of the NIR region between approximately 8000 and approximately 9000 cm(-1) for X = COOCD3 reveals important features of the aromatic CH stretching overtones that are of value since the aromatic CH stretching fundamentals are almost silent. The intensifying of such overtones is attributed to electrical anharmonicity terms, which are evaluated here by ab initio methods and compared with literature data.  相似文献   

17.
Full-dimensional ab initio potential-energy surface (PES) and dipole moment surface are constructed for a methane molecule at the CCSD(T)/cc-pVTZ and MP2/cc-pVTZ levels of theory, respectively, by the modified Shepard interpolation method based on the fourth-order Taylor expansion [MSI(4th)]. The reference points for the interpolation have been set in the coupling region of CH symmetric and antisymmetric stretching modes so as to reproduce the vibrational energy levels related to CH stretching vibrations. The vibrational configuration-interaction calculations have been performed to obtain the energy levels and the absorption intensities up to 9000 cm(-1) with the use of MSI(4th)-PES. The calculated fundamental frequencies and low-lying vibrational energy levels show that MSI(4th) is superior to the widely employed quartic force field, giving a better agreement with the experimental values. The absorption bands of overtones as well as combination bands, which are caused by purely anharmonic effects, have been obtained up to 9000 cm(-1). Strongly coupled states with visible intensity have been found in the 6500-9000 cm(-1) region where the experimental data are still lacking.  相似文献   

18.
The features of blue- and red-shifted electron acceptor-donor (ACH/B) hydrogen bonds have been compared by using quantum chemical calculations. The geometry, the interaction energy and the vibrational frequencies of both blue- (ACH=F3CH, Cl3CH with B=FCD3) and red-shifted (ACH=F3CH, Cl3CH with B=NH3 and ACH=CH3CCH with B=FCD3, NH3) complexes were obtained by using ab initio MP2(Full)/6-31+G(d,p) calculations with the a priori basis-set superposition error (BSSE) correction method. One-dimensional potential energy and dipole moment functions of the dimensionless normal coordinate Q1, corresponding to the CH stretching mode of ACH, have been compared for both types of complexes. Contributions of separate components of the interaction energy to the frequency shift and the effect of electron charge transfer were examined for a set of intermolecular distances by using the symmetry-adapted perturbation theory (SAPT) approach and natural bond orbitals (NBO) population analysis.  相似文献   

19.
The paper provides a re-appraisal of the analytical value of Raman spectroscopy in the investigation of aromatic nitro compounds. Correlations are found between the frequencies of the NO vibrations and the electron-donating and -withdrawing effects of substituents on the phenyl rings. Further, relations are discussed between the highest-frequency CH stretching mode and the electron density and number of nitro groups. The paper contains a large number of spectra of typical aromatic nitro compounds.  相似文献   

20.
Torsional frequencies of methyl and silyl groups occurring in a range of molecules have been calculated by HF, B3LYP and MP2 methods using several basis sets. Linear correlations between calculated and observed values are derived and used to predict unobserved or dubious frequencies. The current experimental value for the E torsion in trimethylphosphine is questioned. The relative merits of the B3LYP and MP2 methods are explored. MP2 calculations can show wide variation with respect to basis set. In cases where two or more silyl groups are attached to a common atom, as in disilylsulphide (SiH3)2S, disilylmethane (SiH3)2CH2, trisilylmethane (SiH3)3CH and tetrasilylmethane (SiH3)4C, marked differences occur between B3LYP and MP2 estimates. These may be linked to concomitant differences in conformation or potential barrier restraining internal rotation. In disilylmethane the B3LYP results agree much better with experiment than those from the MP2 method. HF and B3LYP calculations for disilylsulphide and trisilylphosphine give normal C2v and C3v equilibrium structures, respectively, but in MP2 structures the silyl groups are twisted through 6-13 degrees yielding C2 and C3 configurations. It may be possible to distinguish between these structures through the observation of isolated SiH stretching frequencies in the spectra of fully deuterated materials. Dispersion forces could contribute to the twisting calculated by the MP2 method. Further studies of the microwave and vibrational spectra of disilylsulphide and trisilylphosphine isotopomers are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号