首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined spatial release from masking (SRM) when a target talker was masked by competing talkers or by other types of sounds. The focus was on the role of interaural time differences (ITDs) and time-varying interaural level differences (ILDs) under conditions varying in the strength of informational masking (IM). In the first experiment, a target talker was masked by two other talkers that were either colocated with the target or were symmetrically spatially separated from the target with the stimuli presented through loudspeakers. The sounds were filtered into different frequency regions to restrict the available interaural cues. The largest SRM occurred for the broadband condition followed by a low-pass condition. However, even the highest frequency bandpass-filtered condition (3-6 kHz) yielded a significant SRM. In the second experiment the stimuli were presented via earphones. The listeners identified the speech of a target talker masked by one or two other talkers or noises when the maskers were colocated with the target or were perceptually separated by ITDs. The results revealed a complex pattern of masking in which the factors affecting performance in colocated and spatially separated conditions are to a large degree independent.  相似文献   

2.
Several studies have described a release from speech-on-speech masking associated with separation of target and masker sources in the median sagittal plane. Some have excluded the possibility that small differences between target and masker interaural time disparities can fully account for this release. This study explored the mechanisms underlying the spatial release from speech-on-speech masking that can be obtained in the absence of such differences. In one condition, interaural time disparities were removed from the nominal median-sagittal-plane, head-related impulse responses used to generate the virtual auditory space within which competing sentences were presented. In other conditions, interaural level and spectral disparities also were manipulated by presenting competing sentences monaurally or diotically after convolution with one ear's head-related impulse responses. It was found that substantial spatial release from masking can be obtained in the absence of any interaural disparities and that such disparities probably make a relatively minor contribution to spatial release from speech-on-speech masking in the median sagittal plane. It is argued that this release from masking is driven primarily by a reduction in informational masking that occurs when monaural information at one, or both, of the listener's ears facilitates differentiation of competing sentences that emanate from spatially separated sources.  相似文献   

3.
Release from masking caused by envelope fluctuations   总被引:1,自引:0,他引:1  
This paper examines how short-term energy fluctuations in a masker affect the thresholds for tones at frequencies above those of the masker. Two equally intense tones at 1060 and 1075 Hz produce up to 25 dB less masking than does a 1075-Hz tone set to the overall level of the two-tone complex. At wider frequency separations, two-tone complexes also produce less masking than the pure tone. These results indicate that envelope fluctuations in a masker, whose spectrum is confined to a single critical band, may result in release from masking. The release from masking probably is related to the comodulation masking release reported by Hall et al. [J. Acoust. Soc. Am. 76, 50-56 (1984b)] for modulated-noise maskers with bandwidths greater than one critical band. Further measurements with maskers, whose intensity level in the critical band around 1 kHz was 90 dB SPL, show similar masking by a pure tone and a 625- to 1075-Hz bandpass noise, but less masking by narrow-band noises. These results are inconsistent with a simple frequency selective energy-detector model and indicate that the auditory system can use periods of low masker energy as brief as a few ms to enhance detection of a tone. The results also imply that the upward spread of excitation is best represented by masking patterns for noises with bandwidths of several critical bands.  相似文献   

4.
5.
The masking level difference (MLD) for a narrowband noise masker is associated with marked individual differences. This pair of studies examines factors that might account for these individual differences. Experiment 1 estimated the MLD for a 50 Hz wide band of masking noise centered at 500 or 2000 Hz, gated on for 400 ms. Tonal signals were either brief (15 ms) or long (200 ms), and brief signals were coincident with either a dip or peak in the masker envelope. Experiment 2 estimated the MLD for both signal and masker consisting of a 50 Hz wide bandpass noise centered on 500 Hz. Signals were generated to provide only interaural phase cues, only interaural level cues, or both. The pattern of individual differences was dominated by variability in NoSpi thresholds, and NoSpi thresholds were highly correlated across all conditions. Results suggest that the individual differences observed in Experiment 1 were not primarily driven by differences in the use of binaural fine structure cues or in binaural temporal resolution. The range of thresholds obtained for a brief NoSpi tonal signal at 500 Hz was consistent with a model based on normalized interaural correlation. This model was not consistent for analogous conditions at 2000 Hz.  相似文献   

6.
The proportions of hits and false alarms were estimated for the detection of a 500-Hz sinusoidal signal in each of 25, reproducible samples of wideband, white, Gaussian noise. The effects of signal phase were investigated under diotic (MoSo) and dichotic (MoS pi) conditions and compared to the predictions of two major models of binaural hearing. Averaging the data over samples obscured important across-sample and across-subject differences in performance. The proportions of hits and false alarms for individual noise samples presented under the MoSo condition were highly correlated with those for the same noise samples under the dichotic MoS pi condition, suggesting that the cues determining performance under these conditions are related. Signal-to-masker phase had a large effect on the proportion of hits under the MoSo condition, but only a small effect under the MoS pi condition. The Vector model predicts a large effect of signal phase under the MoS pi condition, and is, therefore, imcompatible with this aspect of the data. The expected value of the decision variable of the EC model is independent of signal phase. However, when the variance of the decision variable is also considered, the EC model does predict changes in the proportion of hits with the phase of the signal, comparable to those observed here. Further, it was shown that, if minor changes in the form of the EC model's decision variable or in the distribution of the internal noise parameters are assumed, the expected value of the decision variable also changes with the phase of the signal.  相似文献   

7.
Speech recognition in noisy environments improves when the speech signal is spatially separated from the interfering sound. This effect, known as spatial release from masking (SRM), was recently shown in young children. The present study compared SRM in children of ages 5-7 with adults for interferers introducing energetic, informational, and/or linguistic components. Three types of interferers were used: speech, reversed speech, and modulated white noise. Two female voices with different long-term spectra were also used. Speech reception thresholds (SRTs) were compared for: Quiet (target 0 degrees front, no interferer), Front (target and interferer both 0 degrees front), and Right (interferer 90 degrees right, target 0 degrees front). Children had higher SRTs and greater masking than adults. When spatial cues were not available, adults, but not children, were able to use differences in interferer type to separate the target from the interferer. Both children and adults showed SRM. Children, unlike adults, demonstrated large amounts of SRM for a time-reversed speech interferer. In conclusion, masking and SRM vary with the type of interfering sound, and this variation interacts with age; SRM may not depend on the spectral peculiarities of a particular type of voice when the target speech and interfering speech are different sex talkers.  相似文献   

8.
These experiments examine how comodulation masking release (CMR) varies with masker bandwidth, modulator bandwidth, and signal duration. In experiment 1, thresholds were measured for a 400-ms, 2000-Hz signal masked by continuous noise varying in bandwidth from 50-3200 Hz in 1-oct steps. In one condition, using random noise maskers, thresholds increased with increasing bandwidth up to 400 Hz and then remained approximately constant. In another set of conditions, the masker was multiplied (amplitude modulated) by a low-pass noise (bandwidth varied from 12.5-400 Hz in 1-oct steps). This produced correlated envelope fluctuations across frequency. Thresholds were generally lower than for random noise maskers with the same bandwidth. For maskers less than one critical band wide, the release from masking was largest (about 5 dB) for maskers with low rates of modulation (12.5-Hz-wide low-pass modulator). It is argued that this release from masking is not a "true" CMR but results from a within-channel cue. For broadband maskers (greater than 400 Hz), the release from masking increased with increasing masker bandwidth and decreasing modulator bandwidth, reaching an asymptote of 12 dB for a masker bandwidth of 800 Hz and a modulator bandwidth of 50 Hz. Most of this release from masking can be attributed to a CMR. In experiment 2, the modulator bandwidth was fixed at 12.5 Hz and the signal duration was varied. For masker bandwidths greater than 400 Hz, the CMR decreased from 12 to 5 dB as the signal duration was decreased from 400 to 25 ms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
11.
Thresholds for 10-ms sinusoids simultaneously masked by bursts of bandpass noise centered on the signal frequency were measured for a wide range of signal frequencies and noise levels. Thresholds were defined as the signal power relative to the masker power at the output of an auditory filter centered on the signal frequency. It was found that the presentation of a continuous random noise, with a spectral notch centered on the signal frequency, produced a reduction in signal thresholds of up to 11 dB. A notched noise spectrum level of 0-5 dB above that of the masker proved most effective in producing a masking release, as measured by a reduction in masked threshold. A release from masking of up to 7 dB could be obtained with a continuous bandpass noise. The most effective spectrum level of this noise was 5 dB below that of the masker. The effect of the continuous notched noise was to reduce signal-to-masker ratios at threshold to about 0 dB, regardless of the threshold in the absence of continuous noise. Thus the greatest release from masking occurred when "unreleased" thresholds were highest. The release from masking is almost complete within 320 ms of notched noise onset, and persists for about 160 ms after notched noise offset, regardless of notched noise level. The phenomenon is similar in many ways to the "overshoot" effect reported by Zwicker [J. Acoust. Soc. Am. 37, 653-663 (1965)]. It is argued that both effects can be largely attributed to peripheral short-term adaptation, a mechanism which is also believed to be involved in forward masking.  相似文献   

12.
Pedrini G  Osten W  Zhang Y 《Optics letters》2005,30(8):833-835
We present a method by which the phase and the amplitude of a wave front are obtained by processing a sequence of intensity patterns recorded at different planes. We do not use any reference wave, as one does for holography. Simulations and experimental results are presented.  相似文献   

13.
Li-Xia Zeng 《中国物理 B》2022,31(7):73202-073202
The electron emission yield is measured from the tungsten surface bombarded by the protons in an energy range of 50 keV-250 keV at different temperatures. In our experimental results, the total electron emission yield, which contains mainly the kinetic electron emission yield, has a very similar change trend to the electronic stopping power. At the same time, it is found that the ratio of total electron emission yield to electronic stopping power becomes smaller as the incident ion energy increases. The experimental result is explained by the ionization competition mechanism between electrons in different shells of the target atom. The explanation is verified by the opposite trends to the incident energy between the ionization cross section of M and outer shells.  相似文献   

14.
Intrinsic long-lived electrophosphorescence and delayed electroluminescence from a conjugated polymer (polyfluorene) thin film is observed for the first time at low temperature. From bias offset voltage dependent measurements, it is concluded that the delayed fluorescence is generated via triplet-triplet annihilation. A fast and efficient triplet exciton quenching by charge carriers is found to occur in the active polymer layer of the working devices.  相似文献   

15.
We use methods of dynamic theory [1–3] to describe how a weak, but properly phased delayed reflection from a high-Q resonant load holds the frequency of a self-excited oscillator within the load frequency band. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 6, pp. 537–551, May 2006.  相似文献   

16.
We address here the issue of quantifying the extent to which a given dynamical system falls short of being ergodic and introduce a new multiscale technique which we call the “ergodicity defect”. Our approach is aimed at capturing both deviation from ergodicity and its dependence on scale. The method uses ergodic theory of dynamical systems and applies harmonic analysis, in particular the scaling analysis is motivated by wavelet theory.We base the definition of the ergodicity defect on the Birkhoff characterization. We systematically exploit the role of the observation function by using characteristic functions arising from a dyadic equipartition of the phase space. This allows us to view the dependence of the defect on scale. In order to build intuition, we consider the defect for specific examples with known dynamic properties and we are able to explicitly compute the defect for some of these simple examples. We focus on three distinctive cases of the dependence of the defect on scale: (1) a defect value that increases as the scale becomes finer, (2) a defect value decreasing with scale and (3) a defect value independent of scale, which occurs for instance when a map is ergodic. We explain the information contained in these three scenarios. We see more complicated behavior with an example which has invariant subsets at various scales.  相似文献   

17.
18.
陈基根  杨玉军  陈漾 《物理学报》2011,60(3):33202-033202
采用多周期800 nm激光组合它的27次谐波脉冲生成超短、宽频的孤立阿秒脉冲.研究表明,脉宽为1 fs的27次谐波脉冲可以有效地控制电子动力学过程.将其加入到单色激光场的特定时域,可以控制电离概率在半个光学周期内迅速提升,使得谐波的转化效率相对于单色场情形增强4个数量级,并实现单一的短量子路径选择,出现频宽为108 eV的超连续辐射谱,叠加该连续谱140次到210次谐波获得了脉宽为39as的强、短孤立脉冲.与文献[7]中采用5 fs/800 nm激光附加紫外阿秒脉冲的方法相比,该方案生成的连续谱频带增宽一 关键词: 组合激光脉冲 连续辐射谱 阿秒脉冲  相似文献   

19.
A masker can reduce target intelligibility both by interfering with the target's peripheral representation ("energetic masking") and/or by causing more central interference ("informational masking"). Intelligibility generally improves with increasing spatial separation between two sources, an effect known as spatial release from masking (SRM). Here, SRM was measured using two concurrent sine-vocoded talkers. Target and masker were each composed of eight different narrowbands of speech (with little spectral overlap). The broadband target-to-masker energy ratio (TMR) was varied, and response errors were used to assess the relative importance of energetic and informational masking. Performance improved with increasing TMR. SRM occurred at all TMRs; however, the pattern of errors suggests that spatial separation affected performance differently, depending on the dominant type of masking. Detailed error analysis suggests that informational masking occurred due to failures in either across-time linkage of target segments (streaming) or top-down selection of the target. Specifically, differences in the spatial cues in target and masker improved streaming and target selection. In contrast, level differences helped listeners select the target, but had little influence on streaming. These results demonstrate that at least two mechanisms (differentially affected by spatial and level cues) influence informational masking.  相似文献   

20.
When listening selectively to one talker in a two-talker environment, performance generally improves with spatial separation of the sources. The current study explores the role of spatial separation in divided listening, when listeners reported both of two simultaneous messages processed to have little spectral overlap (limiting "energetic masking" between the messages). One message was presented at a fixed level, while the other message level varied from equal to 40 dB less than that of the fixed-level message. Results demonstrate that spatial separation of the competing messages improved divided-listening performance. Most errors occurred because listeners failed to report the content of the less-intense talker. Moreover, performance generally improved as the broadband energy ratio of the variable-level to the fixed-level talker increased. The error patterns suggest that spatial separation improves the intelligibility of the less-intense talker by improving the ability to (1) hear portions of the signal that would otherwise be masked, (2) segregate the two talkers properly into separate perceptual streams, and (3) selectively focus attention on the less-intense talker. Spatial configuration did not noticeably affect the ability to report the more-intense talker, suggesting that it was processed differently than the less-intense talker, which was actively attended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号