首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manipulating O2 activation via nanosynthetic chemistry is critical in many oxidation reactions central to environmental remediation and chemical synthesis. Based on a carefully designed plasmonic Ru/TiO2−x catalyst, we first report a room-temperature O2 dissociation and spillover mechanism that expedites the “dream reaction” of selective primary C–H bond activation. Under visible light, surface plasmons excited in the negatively charged Ru nanoparticles decay into hot electrons, triggering spontaneous O2 dissociation to reactive atomic ˙O. Acceptor-like oxygen vacancies confined at the Ru–TiO2 interface free Ru from oxygen-poisoning by kinetically boosting the spillover of ˙O from Ru to TiO2. Evidenced by an exclusive isotopic O-transfer from 18O2 to oxygenated products, ˙O displays a synergistic action with native ˙O2 on TiO2 that oxidizes toluene and related alkyl aromatics to aromatic acids with extremely high selectivity. We believe the intelligent catalyst design for desirable O2 activation will contribute viable routes for synthesizing industrially important organic compounds.

Room-temperature O2 dissociation and spillover, as driven by plasmonic Ru on oxygen-deficient TiO2, expedite the selective oxidation of primary C–H bonds in alkyl aromatics for synthesizing industrially important organic compounds.  相似文献   

2.
In a dissociation attachment experiment of water, three peaks were observed at 7,9, and 12 eV. The origin of the third peak has been believed to be 2B2. However, the calculated energy of this state is 0.6 eV higher than the experimental value. This discrepancy is quite large compared with the case of the lower two peaks. In this study we propose new candidates for resonant states responsible for the third peak. The configurations considered are (3a1)?1(3pa1)2, (3a1)?1(3pb1)2, (3a1)?1(3pb2)2, (3a1)?1(3pa1)1(3pb1)1, (3a1)?1(3pb2)1(3pa1)1, and (3a1)?1(3pb2)1(3pb1)1 which have the parent state (3a1)?1(3pa1)1, (3a1)?1(3pb1)1, or (3a1)?1(3pb2)1. The energy levels arising from these configurations are calculated by a method of configuration interaction. A Few resonance states, which could be responsible for the third peak, are found. New decay process of these states are proposed.  相似文献   

3.
To explore the dynamics of OH formation from two photon absorbed NO(2) with H(2)O, a high-level multiconfigurational perturbation theory was used to map the potential energy profiles of NO(2) dissociation to O ((1)D) + NO (X(2)Π), and subsequent hydrogen abstraction producing 2OH (X(2)Π) + NO (X(2)Π) in the highly excited S(PP) (?(2)A', (2)ππ*) state. The ground state NO(2) is promoted to populate in the S(NP1) (?(2)A", (2)nπ*) intermediate state by one photon absorption at ~440 nm, one thousandth of which is further excited to S(PP) (?(2)A', (2)ππ*) state and undergoes a medium-sized barrier (~11.0 kcal/mol) to give rise to OH radicals. In comparison with the hydrogen abstraction reaction in highly vibrationally excited NO(2) ground state, two photon absorption facilitates NO(2) dissociation to O ((1)D) and O ((1)D) + H(2)O → 2OH (X(2)Π) but results in low quantum yield of NO(2)** since there is a weak absorption upon the second beam light at ~440 nm. It can be concluded that the reaction of two photon absorbed NO(2) with H(2)O makes negligible contributions to the formation of OH radicals. In contrast, single photon absorption at <554 nm is a possible process on the basis of the present and previous computations.  相似文献   

4.
5.
The optical emission spectrum in the near ultraviolet and visible following electron impact on H2O was studied in a crossed-beam and a static gas-target experiment. Emissions of H*, OH*, OH+*, and H2O+* fragments were detected and absolute emission cross sections for the different fragments were determined. A nonthermal rotational population was observed for the diatomic fragments which gives insight into the dissociation process. Further conclusions on the dissociation mechanism are possible based on appearance potentials and the shape of the emission cross sections as a function of impact energy.  相似文献   

6.
7.
Using a recent, full-dimensional, ab initio potential energy surface [Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 134, 094509 (2011)] together with rigorous diffusion Monte Carlo calculations of the zero-point energy of the water trimer, we report dissociation energies, D(0), to form one monomer plus the water dimer and three monomers. The calculations make use of essentially exact zero-point energies for the water trimer, dimer, and monomer, and benchmark values of the electronic dissociation energies, D(e), of the water trimer [J. A. Anderson, K. Crager, L. Fedoroff, and G. S. Tschumper, J. Chem. Phys. 121, 11023 (2004)]. The D(0) results are 3855 and 2726 cm(-1) for the 3H(2)O and H(2)O + (H(2)O)(2) dissociation channels, respectively, and 4206 and 2947 cm(-1) for 3D(2)O and D(2)O + (D(2)O)(2) dissociation channels, respectively. The results have estimated uncertainties of 20 and 30 cm(-1) for the monomer plus dimer and three monomer of dissociation channels, respectively.  相似文献   

8.
The adsorption and dissociation of water on Cu2O(100) have been investigated by the density functional theory-generalized gradient approximation (DFT-GGA) method. The corresponding reaction energies, the structures of the transition states and the activation energies were determined. Calculations with and without dipole correction were both studied to get an understanding of the effect of the dipole moment on the adsorption and reaction of water on dipole surface Cu2O(100). When dipole correction was added, the adsorption energies of H2O on different sites generally decreased. The calculated activation barriers for HxO (x = 1, 2) dehydrogenation are 0.42 eV (1.01 eV without the dipole correction) and 1.86 eV, respectively, including the zero point energy correction. The first dehydrogenation outcome is energetically the most stable product.  相似文献   

9.
The adsorption of H(2)O(2) on Pt and Pt-M alloys, where M is Cr, Co, or Ni, is investigated using density functional theory. Binding energies calculated with a hybrid DFT functional (B3PW91) are in the range of -0.71 to -0.88 eV for H(2)O(2) adsorbed with one of the oxygen atoms on top Pt positions of Pt(3), Pt(2)M, and PtM(2), and enhanced values in the range of -0.81 to -1.09 eV are found on top Ni and Co sites of the Pt(2)M clusters. Adsorption on top sites of Pt(10) yields a weaker binding of -0.48 eV, whereas on periodic Pt(111) and Pt(3)Co(111) surfaces, H(2)O(2) generally dissociates into two OH radicals. On the other hand, attempts to attach H(2)O(2) on bridge sites cause spontaneous dissociation of H(2)O(2) into two adsorbed OH radicals, suggesting that stable adsorptions on bridge sites are not possible for any of the clusters or extended surfaces that are being studied. We also found that the water-H(2)O(2) interaction reduces the strength of the adsorption of H(2)O(2) on these clusters and surfaces.  相似文献   

10.
11.
The activation of adsorbed CO is an important step in CO hydrogenation. The results from TPSR of pre-adsorbed CO with H2 and syngas suggested that the presence of H2 increased the amount of CO adsorption and accelerated CO dissociation. The H2 was adsorbed first, and activated to form H* over metal sites, then reacted with carbonaceous species. The oxygen species for CO2 formation in the presence of hydrogen was mostly OH^*, which reacted with adsorbed CO subsequently via CO^*+OH^* → CO2^*+H^*; however, the direct CO dissociation was not excluded in CO hydrogenation. The dissociation of C-O bond in the presence of H2 proceeded by a concerted mechanism, which assisted the Boudourd reaction of adsorbed CO on the surface via CO^*+2H^* → CH^*+OH^*. The formation of the surface species (CH) from adsorbed CO proceeded as indicated with the participation of surface hydrogen, was favored in the initial step of the Fischer-Tropsch synthesis.  相似文献   

12.
The vibrational overtone induced unimolecular dissociation of HMHP (HOCH(2)OOH) and HMHP-d(2) (HOCD(2)OOH) into OH and HOCH(2)O (HOCD(2)O) fragments is investigated in the region of the 4nu(OH) and 5nu(OH) bands. The unimolecular dissociation rates in the threshold region, corresponding to the 4nu(OH) band, exhibit measurable differences associated with excitation of the OH stretch of the alcohol versus the peroxide functional group, with the higher energy alcohol OH stretching state exhibiting a slower dissociation rate compared to the lower energy peroxide OH stretch in both HMHP and HMHP-d(2). Predictions using the Rice-Ramsperger-Kassel-Marcus theory give rates that are in reasonably good agreement with the measured dissociation rate for the alcohol OH stretch but considerably differ from the measured rates for the peroxide OH stretch in both isotopomers. The present results are interpreted as suggesting that the extent of intramolecular vibrational energy redistribution (IVR) is different for the two OH stretching states associated with the two functional groups in HMHP, with IVR being substantially less complete for the peroxide OH stretch. Analysis of the OH fragment product state distributions in conjunction with phase-space theory simulation gives a D(0) value of 38+/-0.7 kcal/mole for breaking the peroxide bond in HMHP.  相似文献   

13.
The activation of adsorbed CO is an important step in CO hydrogenation. The results from TPSR of pre-adsorbed CO with H2 and syngas suggested that the presence of H2 increased the amount of CO adsorption and accelerated CO dissocia-tion. The H2 was adsorbed first, and activated to form H* over metal sites, then reacted with carbonaceous species. The oxygen species for CO2 formation in the presence of hydrogen was mostly OH*, which reacted with adsorbed CO subsequently via CO*+OH* → CO2*+H*; however, the direct CO dissociation was not excluded in CO hydrogenation. The dissociation of C-O bond in the presence of H2 proceeded by a concerted mechanism, which assisted the Boudourd reaction of adsorbed CO onthe surface via CO*+2H* → CH*+OH*. The formation of the surface species (CH) from adsorbed CO proceeded as indicated with the participation of surface hydrogen, was favored in the initial step of the Fischer-Tropsch synthesis.  相似文献   

14.
A method is proposed for applying the theory of generalized group functions to SCF-GF calculations with large basis sets. A simple procedure for localising the SCF-MO's resulting from a standard SCF calculation is described, with applications to H2O, NH3, CH4 and H2O2. Results compare quite favourably with those obtained by the usual GF method. It is shown that when basis functions are the SCF-MO's and there are only two functions per group, the GF approach is practically equivalent to a configuration interaction treatment where only double excitations within the groups are considered.
Zusammenfassung Es wird eine Methode zur Anwendung von verallgemeinerten Gruppenfunktionen auf SCF-GF-Rechnungen mit großen Basissätzen vorgeschlagen. Ferner wird ein einfaches Verfahren zur Lokalisierung von SCF-MO's angegeben und auf H2O, NH3, CH4 und H2O2 angewendet. Die Resultate sind denen üblicher GF-Methoden ähnlich. Wenn als Basisfunktionen SCF-Funktionen, und zwar nur zwei je Gruppe, angewendet werden, ist der GF-Ansatz praktisch einer CI-Rechnung mit maximal Zweifachanregungen äquivalent.

Résumé On propose une méthode pour appliquer la théorie des fonctions de groupes généralisés à des calculs SCF GF dans des bases de grande dimension. Un procédé de localisation simple est décrit, il permet de localiser les orbitales SCF ordinaires et est appliqué à H2O,NH3, CH4 et H2O2. Les résultats obtenus sont comparables à ceux fournis par la méthode GF ordinaire. Lorsque les fonctions de base sont les O.M. S.C.F. et qu'il n'y a que deux fonctions par groupe, la méthode GF est pratiquement équivalente à une interaction de configuration où seules seraient prises en considération les diexcitations à l'intérieur des groupes.
  相似文献   

15.
The performance of B-LYP, B-P86, B3-LYP, B3-P86, and B3-PW91 density functionals to describe multiple hydrogen bond systems was studied. For this purpose we have chosen the dimers of hydrogen peroxide and the hydrogen peroxide–water complexes. The geometries and vibrational frequencies obtained with a 6-311+G(d,p) basis set were compared with those obtained at the MP2 level using the same basis set expansion. The corresponding dimerization energies were obtained using a 6-311+G(3df,2p) basis set and compared with those obtained using the G2(MP2) theory. Red shiftings of the OH donor stretching frequencies were predicted by all approaches investigated; however, in all cases, the DFT values were sizably larger than the MP2 ones. Similarly, the blue shifting of the torsion of the hydrogen peroxide subunit was larger when evaluated at the DFT level. All functionals reproduced the G2(MP2) relative stabilities of the different local minima quite well. With the exception of the B-LYP and B3-PW91 approaches, all functionals yielded binding energies which deviated from the G2(MP2) values by less than 0.5 kcal/mol, provided that G2-type basis sets were used and that the corresponding BSSE corrections were included. © 1997 John Wiley & Sons, Inc. J Comput Chem 18: 1124–1135  相似文献   

16.
The collinear dissociation of acetylene to C2H and H is studied by a generalized self-consistent procedure. The dissociation energy, the C-H force constant and stretching frequency are computed.  相似文献   

17.
We have studied the vibrational relaxation of the H(2)O bending mode in an H(2)O:HDO:D(2)O isotopic mixture using infrared pump-probe spectroscopy. The transient spectrum and its delay dependence reveal an anharmonic shift of 55+/-10 cm(-1) for the H(2)O bending mode, and a value of 400+/-30 fs for its vibrational lifetime.  相似文献   

18.
The reactions of H2O+, H3O+, D2O+, and D3O+ with neutral H2O and D2O were studied by tandem mass spectrometry. The H2O+ and D2O+ ion reactions exhibited multiple channels, including charge transfer, proton transfer (or hydrogen atom abstraction), and isotopic exchange. The H3O+ and D3O+ ion reactions exhibited only isotope exchange. The variation in the abundances of all ions involved in the reactions was measured over a neutral pressure range from 0 to 2 × 10−5 Torr. A reaction scheme was chosen, which consisted of a sequence of charge transfer, proton transfer, and isotopic exchange reactions. Exact solutions to two groups of simultaneous differential equations were determined; one group started with the reaction of ionized water, and the other group started with the reactions of protonated water. A nonlinear least-squares regression technique was used to determine the rate coefficients of the individual reactions in the schemes from the ion abundance data. Branching ratios and relative rate coefficients were also determined in this manner.A delta chi-squared analysis of the results of the model fitted to the experimental data indicated that the kinetic information about the primary isotopic exchange processes is statistically the most significant. The errors in the derived values of the kinetic information of subsequent channels increased rapidly. Data from previously published selected ion flow tube (SIFT) study were analyzed in the same manner. Rigorous statistical analysis showed that the statistical isotope scrambling model was unable to explain either the SIFT or the tandem mass spectrometry data. This study shows that statistical analysis can be utilized to assess the validity of possible models in explaining experimentally observed kinetic behaviors.  相似文献   

19.
20.
Previous studies have classified a series of nonheme iron catalysts for olefin cis-dihydroxylation by H2O2 into two groups. Complex 1, [(TPA)Fe(OTf)2], representative of Class A catalysts, forms a low-spin FeIII-OOH intermediate that gives rise to a high-valent FeV(=O)OH oxidant. The preference of this catalyst for electron-rich olefins demonstrates its electrophilic character. On the other hand, complex 2, [(6-Me3-TPA)Fe(OTf)2], representative of Class B catalysts, prefers instead to oxidize electron-deficient olefins, suggesting an oxidant with nucleophilic character. It is suggested that such a nucleophilic oxidant may be the high-spin FeIII-OOH intermediate derived from 2 or the FeIV(=O)(*OH) species derived therefrom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号