首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding energy spectra (10–46 eV) and momentum distributions of the valence orbitals of H2O have been measured using a new high-sensitivity binary (e,2e) electron spectrometer employing position-sensitive detectors. The binding energy spectrum shows a previously unreported feature at = 27 eV which is shown to be associated with the (2a1)?1 ionization process. The region between 25 and 46 eV is compared with previous (e,2e) and X-ray photoelectron measurements as well as with several existing and new many-body calculations indicating a splitting of the 2a1 ionization pole strength. In addition the separate momentum distributions of the three outer valence orbitals of H2O have been obtained from deconvoluted binding energy spectra run at a series of azimuthal angles. The results, which show considerably improved signal-to-noise ratio over earlier measurements using single-channel instrumentation are compared with spherically averaged momentum distributions calculated with a variety of wavefunctions.  相似文献   

2.
The complete valence shell binding energy spectra and valence orbital electron momentum distributions for NH3 have been measured by high-momentum-resolution electron momentum spectroscopy (EMS). The results are quantitatively compared with theoretical calculations using SCF wavefunctions ranging from DZ quality to a newly developed 126-GTO wavefunction essentially at the Hartree-Fock limit. The 3a1 and to a lesser extent the 2a1 valence orbital are not adequately described even at the Hartree-Fock limit with basis set saturation including diffuse functions. The differences between theory and experiment are largely resolved by ion-neutral overlap calculations using CI wavefunctions to incorporate the effects of electron correlation. The 126-G (CI) wavefunctions provide accurate calculation of a wide range of electronic properties of NH3 and also give good quantitative prediction of the three valence orbital momentum distributions as well as a reasonable prediction of the many-body pole strength distribution observed in the (2a1)−1 inner valence binding energy spectrum. The present EMS results are compared with recent investigations of wavefunction tails by exterior electron distribution calculations and Penning ionization electron spectroscopy measurements reported by Ohno et al.  相似文献   

3.
Valence-shell binding energy spectra and momentum distributions of CS2 have been measured using non-coplanar symmetric binary (e,2e) spectroscopy. The present measurements are compared with previously published binding energy spectra calculated using the many body 2ph-TDA Green's function (GF) method and the symmetry-adapted cluster configuration-interaction (SAC CI) method. The measured and the calculated binding energy spectra both show extensive population splittings particularly above 20 eV, confirming a significant breakdown of independent particle ionization picture. A relatively strong-outer valence many-body state at 17.0 eV is shown to be satellite of the (2π0)?1 state, in accord with earlier conclusions of photoelectron studies. Momentum distributions measured at several carefully chosen binding energies are compared with the corresponding molecular orbital momentum distributions calculated using small and extended gaussian basis sets. The good qualitative agreement between momentum distributions measured in the inner-valence region wth theoretical 4σm and 5σg orbital momentum distributions confirms the qualitative predictions of satellite parentages by GF and SAC CI calculations. Momentum and position density contour maps of individual orbitals are used to interpret the shapes and atomic characters of the experimental momentum distributions. Momentum densities of the valence orbitals of CS2 are compared with those of the respective valence isoelectronic species CO2  相似文献   

4.
《Chemical physics》1987,113(2):251-263
Fluoromethane (CH3F) has been studied by binary (e,2e) coincidence spectroscopy at 1200 eV using non-coplanar symmetric kinematics. Separation energy spectra have been determined in the energy range up to 50 eV at azimuthal angles of 0° and 9°. The separation energy spectra and electron momentum distributions measured for the valence orbitals of CH3F and CH3Cl are compared with the results of calculations employing SCF wavefunctions and outer valence as well as extended 2ph—TDA Green function methods. Electron density and momentum density maps have been generated for all valence orbitals of both molecules using the SCF wavefunctions and are used to explain differences in the bonding properties of the halomethanes investigated here.  相似文献   

5.
The experimental technique of electron momentum spectroscopy (EMS ) (i.e., binary (e, 2e) spectroscopy) is discussed together with typical examples of its applications over the past decade in the area of experimental quantum chemistry. Results interpreted within the framework of the plane wave impulse and the target Hartree—Fock approximations provide direct measurements of, spherically averaged, orbital electron momentum distributions. Results for a variety of atoms and small molecules are compared with calculations using a range of Fourier transformed SCF position space wavefunctions of varying sophistication. Measured momentum distributions (MD ) provide a “direct” view of orbitals. In addition to offering a sensitive experimental diagnostic for semiempirical molecular wavefunctions, the MD's provide a chemically significant, additional experimental constraint to the usual variational optimization of wavefunctions. The measured MD's clearly reflect well known characteristics of various chemical and physical properties. It appears that EMS and momentum space chemistry offer the promise of supplementary perspectives and new vistas in quantum chemistry, as suggested by Coulson more than 40 years ago. Binding energy spectra in the inner valence region reveal, in many cases, a major breakdown of the simple MO model for ionization in accord with the predictions of many-body calculations. Results are considered for atomic targets, including H and the noble gases. The measured momentum distribution for H2 is also compared with results from Compton scattering. Results for H2 and H are combined to provide a direct experimental assessment of the bond density in H2, which is compared with calculations. The behavior of the outer valence MD ''s for small row two and row three hydride molecules such as H2O and H2S, NH3, HF, and HCl are consistent with well known differences in chemical and physical behavior such as ligand-donor activity and hydrogen bonding. MD measurements for the outermost valence orbitals of HF, H2O and NH3 show significant differences from those calculated using even very high-quality wavefunctions. Measurements of MD's for outer σg orbitals of small polyatomic molecules such as CO2, COS, CS2, and CF4 show clear evidence of mixed s and p character. It is apparent that EMS is a sensitive probe of details of electronic structure and electron motion in atoms and molecules.  相似文献   

6.
Bromomethane (CH3Br) and iodomethane (CH3I) have been studied by binary (e,2e) coincidence spectroscopy at 1200 eV using non-coplanar symmetric kinematics. Separation energy spectra have been determined in the energy range up to 47 eV at azimuthal angles of 0° and 8° for CH3Br and 0° and 6° for CH3I. The separation energy spectra and the electron momentum distributions measured for each of the valence orbitals are compared with theoretical predictions employing SCF wavefunctions and outer valence type and extended 2 ph-TDA Green function calculations. Electron density and momentum density maps have been calculated for all the valence orbitals using the SCF wavefunctions, and they are used to explain trends and contrasts in the electronic structure and bonding properties of these halomethanes in both position and momentum space.  相似文献   

7.
The valence-shell binding energy spectra (8–44 eV) and molecular orbital momentum distributions of OCS have been studied by non-coplanar symmetric binary (e,2e) spectroscopy. Existing theoretical binding energy spectra calculated using the many-body 2ph-TDA Green's function (GF) method and using the symmetry-adapted cluster (SAC) on method are compared with the experiment. Intense many-body structure in the measured and calculated binding energy spectra indicates the general breakdown of the independent particle ionization picture. Experimental momentum distributions are compared with those calculated using ab initio SCF wavefunctions of minimal basis set quality and of near Hartree—Fock quality. Excellent agreement between the experimental momentum distributions and those calculated by the near Hartree—Fock wavefunction is obtained for the three innermost valence orbitals: 8σ, 7σ and 6σ. The correct order of the close lying outer-valence 2π and 9σ orbitals is unambiguously identified from the shapes of the measured momentum distributions. Momentum and position contour density maps computed from theoretical wavefunctions of near Hartree—Fock quality are used to interpret the shapes and atomic characters of the observed momentum distributions. The momentum densities of the outermost-valence antibonding π orbitals and of the outermost-valence bonding σ orbitals of the linear triatomic group: CO2, CS2 and OCS are compared respectively with each other. The associated chemical trends are discussed within the existing framework of momentum-space chemical principles.  相似文献   

8.
The outer valence orbital momentum distributions of CO2 have been reinvestigated using a high momentum resolution (0.1 ao?1 fwhm) binary (e,2e) spectrometer operated at 1200 eV impact energy under the non-coplanar symmetric scattering condition. Generally good agreement of the measured momentum distributions with theoretical momentum distributions calculated using literature SCF double-zeta quality wavefunctions has been obtained for the 1πg, (1πu + 3σu) and 4σg orbitals. Although there is a reasonable agreement of the measured momentum distributions with earlier low momentum resolution (0.4 ao?1 fwhm) non-coplanar measurements at 400 eV impact energy reported by Cook and Brion, given the large differences in the momentum resolutions much more definitive results are obtained in the present study. In particular, the significantly higher momentum resolution clearly shows the mixed s-p character of the 4σg orbital. The present study also gives a much better agreement with theory in the case of the 4σg momentum distribution. For each orbital the calculated and where possible the experimentally determined spherically averaged momentum distributions are compared and contrasted with their respective two-dimensional momentum and position density maps. These together with three-dimensional surface plots at selected constant density values of the four outermost orbitals are used to provide a detailed comparison of momentum-space bonding and orbital properties with their more familiar position-space counterparts in the CO2 triatomic molecule. The calculated momentum-space density contour maps of the core orbitals exhibit rather large density oscillations and the feasibility of future experiments is discussed.  相似文献   

9.
Binding energy spectra of the valence electrons of the open shell molecule NO have been obtained up to 55 eV at azimuthal angles of 0° and 7° using binary (e, 2e) spectroscopy at an impact energy of 1200 eV. The momentum distribution has been obtained for the least tightly bound (unpaired) electron, removal of which leads to formation of the X 1Σ+ ground state of NO+. Momentum distributions have also been measured at 21.0 and 40.5 eV. The measured momentum distributions are compared with several literature wavefunctions of varying complexity. They are found to be in excellent agreement with those calculated using the natural spin orbital wavefunctions of Kouba and Ohrn.  相似文献   

10.
The electron binding energy spectra and momentum profiles of the valence orbitals of difluoromethane, also known as HFC32 (HFC-hydrofluorocarbon) (CH(2)F(2)), have been studied by using a high resolution (e,2e) electron momentum spectrometer, at an impact energy of 1200 eV plus the binding energy, and by using symmetric noncoplanar kinematics. The experimental momentum profiles of the outer valence orbitals and 4a(1) inner valence orbital are compared with the theoretical momentum distributions calculated using Hartree-Fock and density functional theory (DFT) methods with various basis sets. In general, the shapes of the experimental momentum distributions are well described by both the Hartree-Fock and DFT calculations when large and diffuse basis sets are used. However, the result also shows that it is hard to choose the different calculations for some orbitals, including the methods and the size of the basis sets employed. The pole strength of the ionization peak from the 4a(1) inner valence orbital is estimated.  相似文献   

11.
The SF6 molecule has been studied using high-resolution electron momentum spectroscopy [EMS], at a total energy of 1200 eV and using non-coplanar symmetric kinematics. Binding-energy spectra ranging up to 62 eV were measured at out of plane azimuthal angles from 0° to 28°, and in the outer-valence region from 0° to 34°, corresponding to target electron momenta from about 0.1–2.8 au. The binding-energy spectra and electron momentum distributions obtained for the valence orbitals are compared with the results of Green function calculations for the ionization energies and their corresponding pole strengths and the spherically averaged momentum distributions obtained from the SCF wavefunction on which the Green function calculations are based. The SCF basis includes d components on both S and F atoms. In the outer-valence region, where the one-particle picture holds for the ionization process, there is very good agreement between the theoretical energies and pole strengths and the measured ones, but the orbital momentum distributions are given poorly by the SCF wavefunctions. The measured momentum distributions are significantly higher at low momentum (< 1 au), particularly for the 1t2u and 3eg orbitals. In the inner-valence region a substantial splitting of the lines occurs, which is only predicted in a qualitative way. The SCF momentum distribution for the 2eg orbital is in poor agreement with the data, whereas that of the 3t1u orbital is in very good agreement with the measurements.  相似文献   

12.
《Chemical physics》1987,113(1):19-42
The large discrepancies found earlier between experimental measurements and calculations based on near Hartree—Fock wavefunctions for the valence orbital electron momentum distributions of H2O are reinvestigated. New and improved electron momentum spectroscopy measurements for the valence orbitals of H2O and D2O, together with existing experimental data, have been placed on a common intensity scale using the binding energy spectra. Investigation of possible vibrational effects by means of new measurements of the momentum distributions of D2O indicates no detectable differences with the H2O results, within experimental error. A quantitative comparison of these experimental results with both the shapes and magnitudes of momentum distributions calculated in the PWIA and THFA approximations using new, very precise Hartree—Fock (single-configuration) wavefunctions is made. These wavefunctions, which include considerable polarization and which are effectively converged at the HF limit for total energy, dipole moment and momentum distribution permit establishment of basis set independence. The significant discrepancies between theory and experiment which still remain for the momentum distributions of the 1b1, 3a1 and 2a1 orbitals at the THFA level are largely removed by CI calculations of the full ion—neutral overlap amplitude. These CI wavefunctions for the final ion and neutral ground states, generated from the accurate HF limit basis sets, recover up to 88% of the correlation energy. The present work clearly shows the need for adequate consideration of electron correlation effects in describing the low-momentum parts of the 1b1, 3a1 and 2a1 electron distributions, a region which is of crucial importance in problems related to chemical bonding and reactivity. The high level of quantitative agreement obtained between experiment and calculations using sufficiently sophisticated wavefunctions provides support for the essential validity of the plane wave impulse approximation as used in the interpretation of EMS experiments on small molecules.  相似文献   

13.
《Chemical physics》1987,116(3):399-410
The ionization potentials of the valence shell orbitals (up to 40 eV) of triethylamine have been measured by means of the binary (e,2e) technique. Satellite structure, due to transitions to ionic excited states, has been observed in the outer valence shell for binding energies larger than 15 eV. The electron momentum distributions of the valence orbitals have been measured on ionization peaks corresponding to main and satellite transitions. Results are compared with SCF calculations. The electron momentum distribution of the most external orbital, formed mostly by the N 2p lone pair, is discussed in detail.  相似文献   

14.
The ionization energy spectra and electron momentum distributions of formamide were investigated using the high-resolution electron momentum spectrometer in combination with high level calculations. The observed ionization energy spectra and electron momentum distributions were interpreted using symmetry adapted cluster-configuration interaction theory, outer valence Green function, and DFT-B3LYP methods. The ordering of 10a(') and 2a(") orbitals of formamide was assigned unambiguously by comparing the experimental electron momentum distributions with the corresponding theoretical results, i.e., 10a(') has a lower binding energy. In addition, it was found that the low-frequency wagging vibration of the amino group at room temperature has noticeable effects on the electron momentum distributions. The equilibrium-nuclear-positions-approximation, which was widely used in electron momentum spectroscopy, is not accurate for formamide molecule. The calculations based on the thermal average can evidently improve the agreement with the experimental momentum distributions.  相似文献   

15.
A comprehensive study, throughout the valence region, of the electronic structure and electron momentum density distributions of the four conformational isomers of n-pentane is presented. Theoretical (e,2e) valence ionization spectra at high electron impact energies (1200 eV+electron binding energy) and at azimuthal angles ranging from 0 degrees to 10 degrees in a noncoplanar symmetric kinematical setup are generated according to the results of large scale one-particle Green's function calculations of Dyson orbitals and related electron binding energies, using the third-order algebraic-diagrammatic construction [ADC(3)] scheme. The results of a focal point analysis (FPA) of relative conformer energies [A. Salam and M. S. Deleuze, J. Chem. Phys. 116, 1296 (2002)] and improved thermodynamical calculations accounting for hindered rotations are also employed in order to quantitatively evaluate the abundance of each conformer in the gas phase at room temperature and reliably predict the outcome of experiments on n-pentane employing high resolution electron momentum spectroscopy. Comparison with available photoelectron measurements confirms the suggestion that, due to entropy effects, the trans-gauche (tg) conformer strongly dominates the conformational mixture characterizing n-pentane at room temperature. Our simulations demonstrate therefore that experimental measurements of (e,2e) valence ionization spectra and electron momentum distributions would very consistently and straightforwardly image the topological changes and energy variations that molecular orbitals undergo due to torsion of the carbon backbone. The strongest fingerprints for the most stable conformer (tt) are found for the electron momentum distributions associated with ionization channels at the top of the inner-valence region, which sensitively image the development of methylenic hyperconjugation in all-staggered n-alkane chains.  相似文献   

16.
The valence shell electronic structure of NH3 is studied in an (e,2e) experiment with symmetric non-coplanar geometry. The momentum distributions obtained for the separate orbitals are compared with those calculated from several approximate wavefunctions. The 3a1 distribution is found to be particularly sensitive to the form of the wavefunction.  相似文献   

17.
The development of a third-generation electron momentum spectrometer with significantly improved energy and momentum resolutions at Tsinghua University (ΔE = 0.45–0.68 eV, Δθ = ±0.53° and Δ? = ±0.84°) has enabled a reinvestigation of the valence orbital electron momentum distributions of H2O with improved statistical accuracy. The measurements have been conducted at impact energies of 1200 eV and 2400 eV in order to check the validity of the plane wave impulse approximation. The obtained ionization spectra and electron momentum distributions have been compared with the results of computations carried out with Hartree Fock [HF] theory, density functional theory in conjunction with the standard B3LYP functional, one-particle Green’s function [1p-GF] theory along with the third-order algebraic diagrammatic construction scheme [ADC(3)], symmetry adapted cluster configuration interaction [SAC-CI] theory, and a variety of multi-reference [MR-SDCI, MR-RSPT2, MR-RSPT3] theories. The influence of the basis set on the computed momentum distributions has been investigated further, using a variety of basis sets ranging from 6-31G to the almost complete d-aug-cc-pV6Z basis set. A main issue in the present work pertains to a shake-up band of very weak intensity at 27.1 eV, of which the related momentum distribution was analyzed for the first time. The experimental evidences and the most thorough theoretical calculations demonstrate that this band borrows its ionization intensity from the 2a1 orbital.  相似文献   

18.
The valence-shell electron momentum distributions for 1-butene are measured by electron momentum spectroscopy (EMS) employing non-coplanar symmetric geometry. The experimental electron momentum distributions are compared with the density functional theory (DFT) calculations using different-sized basis sets. Although the two conformers of 1-butene in the gas phase, namely the skew and syn, have very close ionization potentials, the electron momentum distributions, especially in the low momentum region, can show prominent differences for some of the valence orbitals. By comparing the experimental electron momentum profiles with the theoretical ones, the skew conformer is found to be more stable than the syn and their relative abundances at room temperature are estimated to be (69 +/- 6)% and (31 +/- 6)%, respectively. It demonstrates that EMS has the latent potential to study the relative stability of conformers.  相似文献   

19.
Electron momentum distributions for outer valence orbitals of CF2Cl2 have been obtained by (e,2e) electron momentum spectroscopy at an incident energy of 1200 eV + binding energy. The experimental electron momentum profiles are compared with Hartree-Fock and density functional theory (DFT) calculations using B3LYP hybrid functional with the 6-31G and 6-311+G* basis sets. Generally, the shapes of the experimental momentum profiles are well reproduced by DFT calculations using larger basis sets 6-311 + G*. An attempt has been made to clarify the ordering of the outer valence orbitals, which have been in controversy, by comparing experimental results with B3LYP/6-311 + G* calculations.  相似文献   

20.
An extensive study, throughout the valence region, of the electronic structure, ionization spectrum, and electron momentum distributions of ethanol is presented, on the ground of a model that focuses on a mixture of the gauche and anti conformers in their energy minimum form, using weight coefficients obtained from thermostatistical calculations that account for the influence of hindered rotations. The analysis is based on accurate calculations of valence one-electron and shakeup ionization energies and of the related Dyson orbitals, using one-particle Green's Function (1p-GF) theory in conjunction with the so-called third-order Algebraic Diagrammatic Construction scheme [ADC(3)]. The confrontation against available UPS (HeI) measurements indicates the presence in the spectral bands of significant conformational fingerprints at outer-valence ionization energies ranging from approximately 14 to approximately 18 eV. The shakeup onset is located at approximately 24 eV, and a shoulder at approximately 14.5 eV in the He I spectrum can be specifically ascribed to the minor anti (C(s)) conformer fraction. Thermally and spherically averaged Dyson orbital momentum distributions are computed for seven resolvable bands in model (e, 2e) ionization spectra at an electron impact energy of 1.2 keV. A comparison is made with results obtained from standard (B3LYP) Kohn-Sham orbitals and EMS measurements employing a high-resolution spectrometer of the third generation. The analysis is qualitatively in line with experiment and reveals a tremendously strong influence of the molecular conformation on the outermost electron momentum distributions. Quantitatively significant discrepancies with experiment can nonetheless be tentatively ascribed to strong dynamical disorder in the gas phase molecular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号