首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ab initio calculations of low-lying electronic states of CrH are presented, including potential energies, dipole and transition dipole moment (TDM) functions, and radiative lifetimes for X (6)Sigma(+), A (6)Sigma(+), 3 (6)Sigma(+), 1 (6)Pi, 2 (6)Pi, 3 (6)Pi, and (6)Delta. Calculation of dynamic correlation effects was performed using the multistate complete active space second-order perturbation method, based on state-averaged complete active space self-consistent-field reference wave functions obtained with seven active electrons in an active space of 16 molecular orbitals. A relativistic atomic natural orbital-type basis set from the MOLCAS library was used for Cr. Good agreement is found between the current calculations and experiment for the lowest two (6)Sigma(+) states, the only states for which spectroscopic data are available. Potential curves for the 3 (6)Sigma(+) and 2 (6)Pi states are complicated by avoided crossings with higher states of the same symmetry, thus resulting in double-well structures for these two states. The measured bandhead T(0)=27 181 cm(-1), previously assigned to a (6)Pi<--X (6)Sigma(+) transition, is close to our value of T(0)=28 434 cm(-1) for the 2 (6)Pi state. We tentatively assign the ultraviolet band found experimentally at 30 386 cm(-1) to the 3 (6)Pi<--X (6)Sigma(+) transition for which the computed value is 29 660 cm(-1). The A (6)Sigma(+)<--X (6)Sigma(+) TDM and A (6)Sigma(+) lifetimes are found to be in reasonable agreement with previous calculations.  相似文献   

2.
Piroxicam (PRX) has been widely studied in an attempt to elucidate the causes and mechanisms of its side effects, mainly the photo-toxicity. In this paper fluorescence spectra in non-protic solvents and different polarities were carried out along with theoretical calculations. Preliminary potential surfaces of the keto and enol forms were obtained at AM1 level of theory providing the most stable conformers, which had their structure re-optimized through the B3LYP/CEP-31G(d,p) method. From the optimized structures, the electronic spectra were calculated using the TD-DFT method in vacuum and including the solvent effect through the PCM method and a single water molecule near PRX. A new potential surface was constructed to the enol tautomer at DFT level and the most stable conformers were submitted to the QST2 calculations. The experimental data showed that in apolar media, the solution fluorescence is raised. Based on conformational analysis for the two tautomers, keto and enol, the results indicated that the PRX-enol is the main tautomer related to the drug fluorescence, which is reinforced by the spectra results, as well as the interconvertion barrier obtained from the QST2 calculations. The results suggest that the PRX one of the enol conformers presents great possibility of involvement in the photo-toxicity mechanisms.  相似文献   

3.
Summary Molecular dipole moments and dipole moments of interaction of seven methyl derivatives of 4-nitropyridine N-oxides were determined in benzene solution. Polar and spectroscopic (13C NMR and UV/Vis) manifestations of intramolecular interaction indicate that the methyl groups modify the electronic interaction between the NO and NO2 groups mainly through steric strain.
Die polaren und spektroskopischen Eigenschaften von Methyl-4-nitropyridin-N-oxiden
Zusammenfassung Dipolmomente und Wechselwirkungsdipolmomente von sieben 4-Nitropyridin-N-oxiden wurden in benzolischen Lösungen gemessen. Die polaren und spektroskopischen Daten (13C NMR und UV/Vis) deuten darauf hin, daß die Methylgruppen die elektronische Wechselwirkung zwischen N-oxid und Nitrogruppe hauptsächlich durch sterische Hinderung beeinflussen.
  相似文献   

4.
A series of transition metal complexes involving non-innocent o-dithiolene and o-phenylenediamine ligands has been characterized in detail by various spectroscopic methods like magnetic circular dichroism (MCD), absorption (abs), resonance Raman (rR), electron paramagnetic resonance (EPR), and sulfur K-edge X-ray absorption spectroscopies. A computational model for the electronic structure of the complexes is then proposed based on the density functional theory (DFT) or ab-initio methods, which can successfully account for the observed trends in the experimental spectra (MCD, rR, and abs) of the complexes. Based on these studies, the innocent vs non-innocent nature of the ligands in a given transition metal complex is found to be dependent on the position of the central metal ion in the periodic table, its effective nuclear charge in interplay with relativistic effects.  相似文献   

5.
A combined theoretical and experimental study of the structure, optical, and photophysical properties of four 2,7-carbazolenevinylene-based derivatives in solution is presented. Geometry optimizations of the ground states of PCP, PCP-CN, TCT, and TCT-CN were carried out using the density functional theory (DFT/B3LYP/6-31G*). It is found that PCP and TCT are nearly planar in their ground electronic states (S0), whereas the cyano derivatives are more twisted. The nature and the energy of the first singlet-singlet electronic transitions have been obtained from time-dependent density functional theory (TDDFT) calculations performed on the optimized geometries. For all the compounds, excitation to the S1 state corresponds mainly to the promotion of one electron from the highest-occupied molecular orbital to the lowest-unoccupied molecular orbital, and the S1 <-- S0 electronic transition is strongly allowed and polarized along the long axis of the molecular frame. The optimization (relaxation) of the first singlet excited electronic state (S1) has been done using the restricted configuration interaction (singles) (RCIS/6-31G*) approach. It is observed that all four investigated compounds become more planar in their S1 relaxed excited state. Electronic transition energies from the relaxed excited states have been obtained from TDDFT calculations performed on the S1-optimized geometries. The absorption and fluorescence spectra of the carbazolenevinylenes have been recorded in chloroform. A good agreement is obtained between TDDFT vertical transitions energies and the (0,0) absorption and fluorescence bands. The change from phenylene to thiophene rings as well as the incorporation of cyano substituents induce bathochromic shifts in the absorption and fluorescence spectra. From the analysis of the energy of the frontier molecular orbitals, it is believed that thiophene rings and CN substituents induce some charge-transfer character to the first electronic transition, which is responsible for the red shifts observed. Finally, the fluorescence quantum yield and the lifetime of the compounds in chloroform have been obtained. In sharp contrast with many oligothiophenes, it is observed that TCT possesses a high fluorescence quantum yield. On the other hand, the CN-containing derivatives exhibit much lower fluorescence quantum yields, probably due to the combined influence of steric effects and charge-transfer interactions caused by the cyano groups.  相似文献   

6.
A thorough analysis of the vibrational features of the titanium silicalite-1 (TS-1) catalyst is presented, based on quantitative IR measurements, Raman and resonant Raman experiments, quantitative XANES, and quantum chemical calculations on cluster and periodic models. The linear correlation of the intensity of the IR and Raman bands located at 960 and 1125 cm(-1) and the XANES peak at 4967 eV with the amount of tetrahedral Ti are quantitatively demonstrated. Raman and resonant Raman spectra of silicalite and TS-1 with variable Ti content are presented, showing main features at 960 and 1125 cm(-1) associated with titanium insertion into the zeolite framework. The enhancement of the intensity of the 1125 cm(-1) feature and the invariance of the 960 cm(-1) feature in UV-Raman experiments, are discussed in terms of resonant Raman selection rules. Quantum chemical calculations on cluster models Si[OSi(OH)(3)](4) and Ti[OSi(OH)(3)](4) at the B3LYP/6-31G(d) level of theory provide the basis for the assignment of the main vibrational contributions and for the understanding of Raman enhancement. The resonance-enhanced 1125 cm(-1) mode is unambiguously associated with a totally symmetric vibration of the TiO(4) tetrahedron, achieved through in-phase antisymmetric stretching of the four connected Ti-O-Si bridges. This vibration can also be described as a totally symmetric stretching of the four Si-O bonds pointing toward Ti. The resonance enhancement of this feature is explained in terms of the electronic structure of the Ti-containing moiety. Asymmetric stretching modes of TO(4) units show distinct behavior when (i) T is occupied by Si as in perfect silicalite, (ii) T is occupied by Ti as in TS-1, or (iii) the oxygen atom belongs to an OH group, such as in terminal tetrahedra of cluster models and in real defective zeolites. Asymmetric SiO(4) and TiO(4) stretching modes appear above and below 1000 cm(-1), respectively, when they are achieved through antisymmetric stretching of the T-O-Si bridges, and around 800 cm(-1) (in both SiO(4) and TiO(4)) when they involve symmetric stretching of the T-O-Si units. In purely siliceous models, the transparency gap between the main peaks at 800 and 1100 cm(-1) contains only vibrational features associated with terminal Si-OH groups, while in Ti-containing models it contains also the above-mentioned asymmetric TiO(4) modes, which in turn are strongly coupled with Si-OH stretching modes. Calculations on periodic models of silicalite and TS-1 free of OH groups using the QMPOT embedding method correctly reproduce the transparency gap of silicalite and the appearance of asymmetric TiO(4) vibrations at 960 cm(-1) in TS-1. Finally, we demonstrate, for the first time, that the distortion of the tetrahedral symmetry around Ti caused by water adsorption quenches the UV-Raman enhancement of the 1125 cm(-1) band.  相似文献   

7.
The strengthening of the hydrogen bonding (H-bond) network as well as transition from the tetrahedral-like water network to the zigzag chain structure of alcohol upon increasing the alcohol concentration in ethanol-water and tertiary butanol (TBA) — water mixtures have been studied by using both steady state and time resolved spectroscopy. Absorption and emission characteristics of coumarin 153 (C153), a widely used non-reactive solvation probe, have been monitored to investigate the structural transition in these binary mixtures. The effects of the hydrogen bond (H-bond) network with alcohol concentration are revealed by a minimum in the peak frequency of the absorption spectrum of C153 which occur at alcohol mole fraction ∼0·10 for water-ethanol and at ∼0·04 for water-TBA mixtures. These are the mole fractions around which several thermodynamic properties of these mixtures show anomalous change due to the enhancement of H-bonding network. While the strengthening of H-bond network is revealed by the absorption spectra, the emission characteristics show the typical non-ideal alcohol mole fraction dependence at all concentrations. The time resolved anisotropy decay of C153 has been found to be bi-exponential at all alcohol mole fractions. The sharp change in slopes of average rotational correlation time with alcohol mole fraction indicates the structural transition in the environment around the rotating solute. The changes in slopes occur at mole fraction ∼0·10 for TBA-water and at ∼0·2 for ethanol-water mixtures, which are believed to reflect alcohol mole fraction induced structural changes in these alcohol-water binary mixtures.  相似文献   

8.
The Raman spectrum of the phenanthrene crystal was investigated between ?190 and +90°C. The results indicate that intermolecular forces play an important role in the solid—solid phase transition at 70°C. The assumption of a molecular conformational change was not confirmed.  相似文献   

9.
In this work, the molecular conformation, vibrational and electronic analysis of para-aminohippuric acid (pAHA, C(9)H(10)N(2)O(3)) were presented for the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. FT-IR and FT-Raman spectra were recorded in the regions of 400-4000cm(-1) and 50-4000cm(-1), respectively. The UV absorption spectra of the compound that dissolved in ethanol and water solution were recorded in the range of 190-400nm. Potential energy curve was computed by means of scanning NCCO torsion angle. The geometry optimization and the energies associated possible four conformers (C1-C4) were computed. The computational results diagnose the most stable conformer of pAHA as the C1 form. Optimized structure of compound was interpreted and compared with the earlier reported experimental values. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. A study on the electronic properties, such as frontier molecular energies, absorption wavelengths and oscillator strengths, were predicted by time-dependent DFT (TD-DFT) approach, while taking solvent effects into account. To investigate non-linear optical properties: polarizability, anisotropy of polarizability and molecular first hyperpolarizability of molecule were computed. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures were calculated.  相似文献   

10.
The preferred conformations of dimethyl sulfite and their vibrational spectra were studied by matrix-isolation Fourier transform infrared spectroscopy and theoretical methods (density functional theory (DFT) and Moller-Plesset (MP2), with basis sets of different sizes, including the quadruple-zeta, aug-cc-pVQZ basis). Five minima were found at these levels of theory. At the MP2/6-31++G(d,p) and DFT/B3LYP/aug-cc-pVQPZ levels, the GG conformer (where the O-S-O-C dihedral angles are 73.2 and 70.8 degrees ) resulted in the conformational ground state. At the highest level of theory used, the GT conformer (O-S-O-C = +68.5 and -173.2 degrees ) is 0.83 kJ mol(-1) higher in energy than the GG form, while conformer GG' (O-S-O-C = +85.7 and -85.7 degrees ) has a relative energy of 1.18 kJ mol(-1). The remaining two conformers (G'T and TT) are high-energy forms and not experimentally relevant. In consonance with the theoretical predictions, conformer GG was found to be the most stable conformer in the gaseous phase as well as in the low-temperature matrices. Annealing of the argon matrices first promotes the GG'-->GT isomerization, which is followed by conversion of GT into the most stable conformer. There is no evidence of occurrence of GG'-->GG direct conversion in the low-temperature matrices. On the other hand, during deposition of the xenon matrices conformer GG' totally converts to conformer GT. Two observations demonstrated this fact: no evidence of bands corresponding to GG' were observed in xenon matrices and the GG/GT intensity ratio became similar to the GG/(GT + GG') intensity ratio observed in argon matrices. All these results could be explained by taking into account the relative values of the theoretically predicted energy barriers for the different isomerization processes: GG'-->GT, 1.90 kJ mol(-1); GT-->GG, 9.64 kJ mol(-1); and GG'-->GG, 19.46 kJ mol(-1).  相似文献   

11.
Curcumin, a well-known Indian spice, holds a variety of properties in many different fields from medicinal chemistry to dye industry. The peculiar electronic structure makes curcumin a valuable metal chelator. The principal aim of this work is a computational study of the structural and electronic properties of the ground and the first singlet excited states of the curcuminoidic core. Concerning the ground state, tautomeric equilibrium, vibrational and thermochemical analysis and electronic absorption spectra (with ab initio and semi-empirical methodologies) have been studied. A full geometry optimization of the first singlet excited states was obtained, with different computational methodologies. Solvent effects are also implicitly considered. An accurate comparison of the results is presented. Interesting aspects emerge, which suggest successive investigation about the nature of the excited states. The obtained results may be of large applicative interest. If curcuminoids are considered as potential ligands for complexes formation with metallic ions of pharmaceutical, medical–physical and technological interest, exciting the system with photons of appropriate frequencies, a photomodulated release of the metallic ion in the environment might be guessed, because of an important photoinduced geometrical modification.  相似文献   

12.
Two series of new soluble conjugated compounds containing tetrazine central ring have been synthesized. The three-ring compounds have been synthesized by the reaction of aryl cyanide (where aryl = thienyl, alkylthienyl, phenyl or pyridyl) with hydrazine followed by oxidation of the intermediate product with diethyl azodicarboxylate. The five-ring compounds have been prepared using two pathways: (i) reaction of 5-cyano-2,2'-bithiophene (or its alkyl derivative) with hydrazine; (ii) via Suzuki or Stille coupling of 3,6-bis(5-bromo-2-thienyl)-1,2,4,5-tetrazine with a stannyl or boronate derivative of alkylthiophene. UV-vis spectroscopic properties of the synthesized compounds are strongly dependent on the nature of the aryl group, the position of the solubilizing substituent and the length of the molecule, showing the highest bathochromic shift (λ(max) > 440 nm) for five-ring compounds with alkyl groups attached to C(α) carbon in the terminal thienyl ring. An excellent linear correlation has been found for spectroscopically determined and theoretically calculated (TD-B3LYP/6-31G*) excitation energies. With the exception of dipyridyl derivative, the calculated lowest unoccupied molecular orbital (LUMO) level of the investigated molecules changes within a narrow range (from -2.63 to -2.41 eV), in line with the electrochemical data, which show a reversible reduction process with the redox potential varying from -1.23 V to -1.33 V (vs. Fc/Fc(+)). The electrochemically determined positions of the LUMO levels are consistently lower by 0.9 to 1.2 eV with respect to the calculated ones. All molecules readily crystallize. Single crystal studies of 3,6-bis(2,2'-bithien-5-yl)-1,2,4,5-tetrazine show that it crystallizes in a P2(1)/c space group whose structural arrangement is not very favorable to the charge carriers flow within the crystal. Powder diffraction studies of other derivatives have shown that their structural organization is sensitive to the position of the solubilizing substituent. In particular, the presence of alkyl groups attached to C(α) carbon in the terminal thienyl ring promotes the formation of a lamellar-type supramolecular organization.  相似文献   

13.
Two organotin catalysts, namely, dibutyltin dilaurate (DBTDL) and dibutyltin diacetate (DBTDA), commonly used in the synthesis of polyurethanes, have been investigated combining vibrational spectroscopic measurements with molecular modeling. The structure and vibrational spectra of the DBTDA molecule have been simulated using density functional theory. Thus, because of the Sn...O interactions, the lowest energy conformer reveals an asymmetrically chelated structure of the acetate groups with a C2v symmetry. The experimental IR spectra of DBTDA and DBTDL diluted in carbon tetrachloride and in supercritical CO2 show unambiguously that these molecules adopt the asymmetrically chelated conformation in the solvent. A new attribution of the main peaks constituting the respective IR spectra of the catalysts could be carried out. Finally, from the IR spectra of the two catalysts diluted in supercritical CO2 reported as a function of time, it was found that both molecules react slightly with CO2. However, their spectrum remains unchanged at the earliest stage of the polymerization, indicating that these molecules preserve a catalytic activity similar to that noted in conventional organic solvent.  相似文献   

14.
The infrared spectrum of monomeric unsubstituted coumarin (C9H6O2; 2H-1-benzopyran-2-one), isolated in solid argon at 10 K is presented and assigned. The UV-induced (lambda>200 nm) unimolecular photochemistry of the matrix-isolated compound was studied experimentally. Three main photoreactions were observed: (a) decarboxylation of the compound and formation of benzocyclobutadiene and CO2, with the Dewar form of coumarin as intermediate; (b) isomerization of the compound, leading to production of a conjugated ketene; and (c) decarbonylation, leading to formation of CO and benzofuran complex. Further decomposition of benzofuran to produce ethynol is suggested. Photochannels (a) and (b) correspond to those previously observed for matrix-isolated alpha-pyrone and its sulfur analogs (Phys. Chem. Chem. Phys. 2004, 6, 929; J. Phys. Chem. A 2006, 110, 6415), while route (c) is similar to the UV-induced photochemistry of coumarin in the gaseous phase (J. Phys. Chem. A 2000, 104, 1095). Interpretation of the experimental data is supported by extensive calculations performed at the B3LYP/6-311++G(d,p), MP2/6-31G(d,p) and MP2/6-311++G(d,p) levels.  相似文献   

15.
The geometric and electronic structures of a series of hypothetical compounds of the types CpM(C13H9N) and (CO)3M(C13H9N) (M = first row transition metal and C13H9N = 7,8-benzoquinoline) have been investigated by means of density functional theory (DFT). The benzoquinoline ligand can bind to the metal through η16 coordination modes, adopting structures of types a, b and c, in agreement with the electron count and the nature of the metal. In the investigated species, the most favored closed-shell count is 18-MVE, except for the Ti and V models which prefer the open-shell 16-MVE configuration. This study has shown the difference in the coordination ability of this heteropolycyclic ligand and coordination of the inner C6 ring is less favored than the outer C6 and C5N rings, in agreement with the π-electron density localization.  相似文献   

16.
Stability, spectroscopic constants, and dissociation of CO2+ have been studied in detail using ab initio MP2, CCSD and CCSD(T) methods, and density functional B3LYP method. The stability and the ambiguity between the ground and metastable state of the molecular dication have been discussed. The spectroscopic constants of the molecular dication have been compared with the experimental and theoretical values wherever available. Various charge symmetric and charge asymmetric dissociation pathways of CO2+ have been investigated. After dissociation, the fragmented atoms and ions are considered to be either in their ground or in their metastable state. Interesting results have been obtained for the charge symmetric and charge asymmetric dissociation of the diatomic dication. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

17.
Geometrical structure and vibrational modes of potassium and sodium ethyl/heptyl xanthates were studied, using both theoretical and experimental methods. Both Hartree-Fock and density functional theory were used. The experimental method used was infrared absorption spectroscopy (FTIR). Our work showed that vibrational frequencies calculated with density functional theory, using the local density approximation, are in very good agreement with experiments. The results were not improved by using the more sophisticated and computationally demanding B3LYP functional.  相似文献   

18.
Potential energy curves, energy parameters, and spectroscopic values for the X (2)Sigma(+), A (2)Pi, B (2)Sigma(+), a (4)Pi, and b (4)Sigma(+), states of CaH have been calculated using the multireference configuration interaction and coupled cluster levels of theory, while employing quantitative basis sets (of augmented quintuple-zeta quality) and taking also into account core/valence correlation and one-electron relativistic effects. For the ground (X (2)Sigma(+)) and the first two following excited states (A (2)Pi, B (2)Sigma(+)) of CaH, the permanent electric dipole moments have been calculated. Our best finite field dipole moment of the A (2)Pi state of 2.425 D (upsilon = 0) is in very good agreement with the experimental literature value of 2.372(12) D. However, a discrepancy is observed in the dipole moment of the X (2)Sigma(+) state. Our most extensive calculation gives mu = 2.623 D (upsilon = 0), which is considerably smaller than the experimental value of mu = 2.94(16) D (upsilon = 0). Small van der Waals minima were found for both "repulsive" quartet states. Spectroscopic constants and energy parameters for all states are in remarkable agreement with available experimental values.  相似文献   

19.
Reaction of [Cp*Ir(P-P)Cl][B(C6F5)4] (P-P = bisdimethydiphosphinomethane (dmpm), bisdiphenyldiphosphinomethane (dppm)) with [Et3Si][B(C6F5)4] in methylene chloride under 1 atm of hydrogen gas affords the dicationic compressed dihydride complexes [Cp*Ir(P-P)H2][B(C6F5)4]2. These dicationic complexes are highly acidic and are very readily deprotonated to the corresponding monohydride cations. When the preparative reaction is carried out under HD gas, the hydride resonance exhibits JHD = 7-9 Hz, depending upon the temperature of observation, with higher values of JHD observed at higher temperatures. A thermally labile rhodium analogue, [CpRh(dmpm)(H2)][B(C6F5)4]2, was prepared similarly. A sample prepared with HD gas gave JHD = 31 Hz and J(HRh) = 31 Hz, allowing the Rh complex to be identified as a dihydrogen complex. Quantum dynamics calculations on a density functional theory (DFT) potential energy surface have been used to explore the structure of the Ir complexes, with particular emphasis on the nature of the potential energy surface governing the interaction between the two hydride ligands and the Ir center.  相似文献   

20.
The conformational properties of azapeptide derivatives, Ac-azaGly-NHMe (1), Ac-azaAla-NHMe (2), Ac-NMe-azaGly-NHMe (3), Ac-NMe-azaAla-NHMe (4), Ac-azaGly-NMe(2) (5), Ac-azaAla-NMe(2) (6), Ac-NMe-azaGly-NMe(2) (7), and Ac-NMe-azaAla-NMe(2) (8), were systematically examined by using ab initio MO and DFT methods. Structural perturbations in azapeptides resulting from cyclic substitution of a methyl group at three N-positions of an azaamino acid were studied on the basis of the structure of the simplest model azapeptide, 1. Potential energy surfaces were generated at the HF/6-31G level for 1-4 and at the HF/6-31G//HF/3-21G level for 5-8 by rotating two key dihedral angles (phi, psi) in increments of 30 degrees. The backbone (phi, psi) angles of the minima for 1-4 are observed at the i + 2 position to form the betaI(I')-, betaII(II')-, betaVI-turns or the polyproline II structure according to the orientation of the acetyl group and the positions of the N-methyl groups. Compounds 5-8 coupled to a secondary amine were found to preferentially adopt polyproline II, betaI(III)-turn, or alpha-helical structure or even extended conformations depending on the orientation of the acetyl group and the positions of the N-methyl groups. Furthermore, N-methyl groups, depending on their positions, were found to affect the orientation of the amide group in the lowest energy conformations, the pyramidality of the N2 atom, and the bond length in azapeptide derivatives. These unique theoretical conformations of N-methyl azapeptide derivatives could be utilized in the definite design of secondary structure for peptides and proteins, and in the development of new drugs and molecular machines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号