首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The Rydberg states in the vacuum ultraviolet photoabsorption spectrum of 1,2,3-triazole have been measured and analyzed with the aid of comparison to the UV valence photoelectron ionizations and the results of ab initio configuration interaction (CI) calculations. Calculated electronic ionization and excitation energies for singlet, triplet valence, and Rydberg states were obtained using multireference multiroot CI procedures with an aug-cc-pVTZ [5s3p3d1f] basis set and a set of Rydberg [4s3p3d3f] functions. Adiabatic excitation energies obtained for several electronic states using coupled-cluster (singles, doubles, and triples) and complete active space self-consistent field procedures agree well with experimental values. Variations in bond lengths with the electronic state are discussed. The lowest energy UV band (~5.5-6.5 eV) is assigned to three electronically excited states and demonstrates the occurrence of a nonplanar upper state on the low energy side. A UV photoelectron spectrum with an improved resolution yielded adiabatic and vertical ionization energies and reorganization energies for several of the lowest cationic states. As well as excitations to the s, p, d-Rydberg states are the excitations consistent with an f-series.  相似文献   

2.
The VUV electronic spectroscopy of acetone studied by synchrotron radiation   总被引:1,自引:0,他引:1  
The electronic state spectroscopy of acetone (CH3)2CO has been investigated using high-resolution VUV photoabsorption spectroscopy in the energy range 3.7-10.8 eV. New vibronic structure has been observed, notably in the low energy absorption band assigned to the 1(1)A(1) --> 1(1)A2 (ny --> pi*) transition. The local absorption maximum at 7.85 eV has been tentatively attributed to the 4(1)A1 (pi --> pi*) transition. Six Rydberg series converging to the lowest ionisation energy (9.708 eV) have been assigned as well as a newly-resolved ns Rydberg series converging to the first ionic excited state (12.590 eV). Rydberg orbitals of each series have been classified according to the magnitude of the quantum defect (delta) and are extended to higher quantum numbers than in the previous analyses.  相似文献   

3.
Electronic excitations and the resonance Raman spectrum of formamide were obtained from ab initio electron correlation calculations using the equation of motion coupled cluster (EOM-CCSD) method. Interpretation of the UV spectrum on the basis of calculated vertical excitation energies and oscillator strengths accounts for all experimental bands previously assigned. Our assignment, however, suggests an additional Rydberg band at about 7.4 eV which may be hidden under the main absorption. We also show that the Rydberg states appear pairwise, corresponding to n and π hole states, respectively. Using analytic derivative techniques, derivatives of the excited state energies with respect to normal coordinates of the ground state were calculated. Approximate resonance Raman intensities have been determined.  相似文献   

4.
Although formaldehyde, H?CO, has been extensively studied there are still several issues not-well understood, specially regarding its dynamics in the VUV energy range, mainly due to the amount of nonadiabatic effects governing its dynamics. Most of the theoretical work on this molecule has focused on vertical excitation energies of Rydberg and valence states. In contrast to photodissociation processes involving the lowest-lying electronic states below 4.0 eV, there is little known about the photodynamics of the high-lying electronic states of formaldehyde (7-10 eV). One question of particular interest is why the (π, π*) electronic state is invisible experimentally even though it corresponds to a strongly dipole-allowed transition. In this work we present a coupled multisurface 2D photodynamics study of formaldehyde along the CO stretching and the symmetric HCH bending motion, using a quantum time-dependent approach. Potential energy curves along all the vibrational normal modes of formaldehyde have been computed using equation-of-motion coupled cluster including single and double excitations with a quadruply augmented basis set. In the case of the CO stretching coordinate, state-averaged complete active space self-consistent field followed by multireference configuration interaction was used for large values of this coordinate. 2D (for the CO stretching coordinate and the HCH angle) and 3D (including the out-of-plane distortion) potential energy surfaces have been computed for several Rydberg and valence states. Several conical intersections (crossings between potential energy surfaces of the same multiplicity) have been characterized and analyzed and a 2D 5 × 5 diabatic model Hamiltonian has been constructed. Based on this Hamiltonian, electronic absorption spectra, adiabatic and diabatic electronic populations and vibrational densities have been obtained and analyzed. The experimental VUV absorption spectrum in the 7-10 eV energy range is well reproduced, including the vibrational structure and the high irregularity in the regime of strong interaction between the (π, π*) electronic state and neighboring Rydberg states.  相似文献   

5.
The far UV absorption spectra of many polyatomic molecules show featureless, broad bands, even though the lifetimes of the underlying electronic states can be long enough to render the states observable. Using photoionization from Rydberg states we measure electron binding energies, thereby referencing the electronic spectra to the adiabatic ionization energy. In trimethylamine, we find that the 3s, the 3p(x,y), and the 3p(z) Rydberg states have binding energies of 3.087, 2.251, and 2.204 eV, respectively. Vibrational motions excited while preparing the Rydberg states do not interfere with the spectra.  相似文献   

6.
7.
In continuation of a recent study of the electronic structure of norbornane [J. Chem. Phys., 2004, 121, 10525] by means of electron momentum spectroscopy (EMS), we present Green's Function calculations of the ionization spectrum of this compound at the ADC(3) level using basis sets of varying quality, along with accurate evaluations at the CCSD(T) level of the vertical (26.5 eV) and adiabatic (22.1 eV) double ionization thresholds under C(2v) symmetry. The obtained results are compared with newly recorded ultraviolet photoemission spectra (UPS), up to binding energies of 40 eV. The theoretical predictions are entirely consistent with experiment and indicate that, in a vertical depiction of ionization, shake-up states at binding energies larger than approximately 26.5 eV tend to decay via emission of a second electron in the continuum. A band of s-type symmetry that has been previously seen at approximately 25 eV in the electron impact ionization spectra of norbornane is entirely missing in the UPS measurements and theoretical ADC(3) spectra. With regard to these results and to the time scales characterizing electron-electron interactions in EMS (10(-17) s) as compared with that (10(-13) s) of photon-electron interactions in UPS, and considering the p-type symmetry of the electron momentum distributions for the nearest 1b(1) and 1b(2) orbitals, this additional band can certainly not be due to adiabatic double ionization processes starting from the ground electronic state of norbornane, or to exceptionally strong vibronic coupling interactions between cationic states derived from ionization of the latter orbitals. It is therefore tentatively ascribed to autoionization processes via electronically excited and possibly dissociating states.  相似文献   

8.
Excited-state geometries and electronic spectra of butadiene, acrolein, and glyoxal have been investigated by the symmetry adapted cluster configuration interaction (SAC-CI) method in their s-trans conformation. Valence and Rydberg states below the ionization threshold have been precisely calculated with sufficiently flexible basis sets. Vertical and adiabatic excitation energies were well reproduced and the detailed assignments were given taking account of the second moments. The deviations of the vertical excitation energies from the experiment were less than 0.3 eV for all cases. The SAC-CI geometry optimization has been applied to some valence and Rydberg excited states of these molecules in the planar structure. The optimized ground- and excited-state geometries agree well with the available experimental values; deviations lie within 0.03 A and 0.7 degrees for the bond lengths and angles, respectively. The force acting on the nuclei caused by the excitations has been discussed in detail by calculating the SAC-CI electron density difference between the ground and excited states; the geometry relaxation was well interpreted with the electrostatic force theory. In Rydberg excitations, geometry changes were also noticed. Doubly excited states (so-called 2 (1)A(g) states) were investigated by the SAC-CI general-R method considering up to quadruple excitations. The characteristic geometrical changes and large energetic relaxations were predicted for these states.  相似文献   

9.
The electronic structure of spiro[4.4]nonatetraene 1 as well as that of its radical anion and cation were studied by different spectroscopies. The electron‐energy‐loss spectrum in the gas phase revealed the lowest triplet state at 2.98 eV and a group of three overlapping triplet states in the 4.5 – 5.0 eV range, as well as a number of valence and Rydberg singlet excited states. Electron‐impact excitation functions of pure vibrational and triplet states identified various states of the negative ion, in particular the ground state with an attachment energy of 0.8 eV, an excited state corresponding to a temporary electron attachment to the 2b1 MO at an attachment energy of 2.7 eV, and a core excited state at 4.0 eV. Electronic‐absorption spectroscopy in cryogenic matrices revealed several states of the positive ion, in particular a richly structured first band at 1.27 eV, and the first electronic transition of the radical anion. Vibrations of the ground state of the cation were probed by IR spectroscopy in a cryogenic matrix. The results are discussed on the basis of density‐functional and CASSCF/CASPT2 quantum‐chemical calculations. In their various forms, the calculations successfully rationalized the triplet and the singlet (valence and Rydberg) excitation energies of the neutral molecule, the excitation energies of the radical cation, its IR spectrum, the vibrations excited in the first electronic absorption band, and the energies of the ground and the first excited states of the anion. The difference of the anion excitation energies in the gas and condensed phases was rationalized by a calculation of the Jahn‐Teller distortion of the anion ground state. Contrary to expectations based on a single‐configuration model for the electronic states of 1 , it is found that the gap between the first two excited states is different in the singlet and the triplet manifold. This finding can be traced to the different importance of configuration interaction in the two multiplicity manifolds.  相似文献   

10.
Absolute emission cross sections and threshold energies have been measured for radiation (1850–9000Å) from excited fragments (OH, O and H) produced by electron impact (0–1000 eV) on water vapour. The results are compared with previous experiments and the discrepancies are discussed. The measurements indicate that hydroxyl radicals excited in the A2+ state originate from excitation of both singlet and triplet states of the water molecule. Excited atomic fragments arise partly from predissociation of Rydberg states of the water molecule converging to the third ionization potential.  相似文献   

11.
Ultrafast relaxation of electronically excited pure He droplets is investigated by femtosecond time-resolved photoelectron imaging. Droplets are excited by extreme ultraviolet (EUV) pulses with photon energies below 24 eV. Excited states and relaxation products are probed by ionization with an infrared (IR) pulse with 1.6 eV photon energy. An initially excited droplet state decays on a time scale of 220 fs, leading predominantly to the emission of unaligned 1s3d Rydberg atoms. In a second relaxation channel, electronically aligned 1s4p Rydberg atoms are emitted from the droplet within less than 120 fs. The experimental results are described within a model that approximates electronically excited droplet states by localized, atomic Rydberg states perturbed by the local droplet environment in which the atom is embedded. The model suggests that, below 24 eV, EUV excitation preferentially leads to states that are localized in the surface region of the droplet. Electronically aligned 1s4p Rydberg atoms are expected to originate from excitations in the outermost surface regions, while nonaligned 1s3d Rydberg atoms emerge from a deeper surface region with higher local densities. The model is used to simulate the He droplet EUV absorption spectrum in good agreement with previously reported fluorescence excitation measurements.  相似文献   

12.
The electronic spectrum of cyclopropene has been studied using multiconfigurational second-order perturbation theory (CASPT2) with extended ANO-type basis sets. The calculation comprises two valence states and the 3s, 3p, 3d members of the Rydberg series converging to the π and σ ionization limits. A total of twenty singlet and twenty triplet excited states have been analyzed. The results confirm the valence nature of the lowest energy singlet-singlet band and yield a conclusive assignment: the first dipole-allowed transition in cyclcopropene is due to absorption to a (σ → π*) state. The (π → π*) (V) state is interleaved among a number of Rydberg states in the most intense band of the system. The remaining spectral bands are due to Rydberg transitions of higher energy. The two lowest singlet-triplet transitions involve the same valence states. The results are in agreement with available experimental data and provide a number of new assignments of the experimental spectra.  相似文献   

13.
We report ab initio theoretical calculation on 32 excited states of H2 O found to lie below 11.7 eV. Of the eight states observed experimentally, the average discrepancy between theoretical and experimental excitation energies is 0.1 eV. We find that the excited states can each be characterized as arising from an excitation to a Rydberg orbital. Our results indicate that the ? and F? states are both 3d-like excited states rather than one 3d state and one 4s state as previously assumed and similarly for the two Rydberg series joining onto ? and F?. The nsa1 Rydberg series is found to have a quantum defect of 1.38. joining onto the Ã(1B1 state. We have assigned the 9.81 eV transition observed by electron impact as the 1b1 – 3pb1 excitation to a 3A1 state.  相似文献   

14.
Ab initio electronic structure methods are used to estimate the cross sections for electron transfer from donor anions having electron binding energies ranging from 0.001 to 0.6 eV to each of three sites in a model disulfide-linked molecular cation. The three sites are (1) the S-S sigma(*) orbital to which electron attachment is rendered exothermic by Coulomb stabilization from the nearby positive site, (2) the ground Rydberg orbital of the -NH(3)(+) site, and (3) excited Rydberg orbitals of the same -NH(3)(+) site. It is found that attachment to the ground Rydberg orbital has a somewhat higher cross section than attachment to either the sigma orbital or the excited Rydberg orbital. However, it is through attachment either to the sigma(*) orbital or to certain excited Rydberg orbitals that cleavage of the S-S bond is most likely to occur. Attachment to the sigma(*) orbital causes prompt cleavage because the sigma energy surface is repulsive (except at very long range). Attachment to the ground or excited Rydberg state causes the S-S bond to rupture only once a through-bond electron transfer from the Rydberg orbital to the S-S sigma(*) orbital takes place. For the ground Rydberg state, this transfer requires surmounting an approximately 0.4 eV barrier that renders the S-S bond cleavage rate slow. However, for the excited Rydberg state, the intramolecular electron transfer has a much smaller barrier and is prompt.  相似文献   

15.
Ionization of bromomethanes (CH3Br, CH2Br2, and CHBr3) upon collision with metastable He*(2(3)S) atoms has been studied by means of collision-energy-resolved Penning ionization electron spectroscopy. Lone-pair (nBr) orbitals of Br4p characters have larger ionization cross sections than sigma(C-Br) orbitals. The collision-energy dependence of the partial ionization cross sections shows that the interaction potential between the molecule and the He*(2(3)S) atom is highly anisotropic around CH3Br or CH2Br2, while isotropic attractive interactions are found for CHBr3. Bands observed at electron energies of approximately 2 eV in the He*(2(3)S) Penning ionization electron spectra (PIES) of CH2Br2 and CHBr3 have no counterpart in ultraviolet (He I) photoionization spectra and theoretical (third-order algebraic diagrammatic construction) one-electron and shake-up ionization spectra. Energy analysis of the processes involved demonstrates that these bands and further bands overlapping with sigma(C-Br) or piCH2 levels are related to autoionization of dissociating (He+ - Br-) pairs. Similarly, a band at an electron energy of approximately 1 eV in the He*(2(3)S) PIES spectra of CH3Br has been ascribed to autoionizing Br** atoms released by dissociation of (unidentified) excited states of the target molecule. A further autoionization (S) band can be discerned at approximately 1 eV below the lone-pair nBr bands in the He*(2(3)S) PIES spectrum of CHBr3. This band has been ascribed to the decay of autoionizing Rydberg states of the target molecule (M**) into vibrationally excited states of the molecular ion. It was found that for this transition, the interaction potential that prevails in the entrance channel is merely attractive.  相似文献   

16.
Negative ion photoelectron spectroscopy was employed to investigate the electronic structure of the acridine molecular anion and its monohydrated anion in the gas phase. Their adiabatic electron affinities were measured to be 0.896+/-0.010 and 1.18+/-0.05 eV, and the low-lying electronic excited states in both neutral acridine and in its monohydrate were revealed. The photoelectron spectra clearly exhibit the presence of low-lying singlet and triplet states having a (pi,pi*) configuration in an uncomplexed acridine molecule. Comparison of the photoelectron spectrum of acridine with that of anthracene shows that photodetachment processes into the excited states of (n,pi*) configuration have little intensity, implying a relatively large intramolecular structural relaxation in the (n,pi*) states.  相似文献   

17.
Absorption spectrum of H(2)CS in the region 5.6-9.5 eV was recorded with a continuously tunable light source of synchrotron radiation. After we subtracted absorption bands of CS(2), our spectrum clearly shows vibrational progressions associated with transitions (1)A(1)(pi,pi*)-X (1)A(1) and (1)B(2)(n,4s)-X (1)A(1) in the region 5.6-6.7 eV. A spectrum from which absorption of C(2)H(4) and CS(2) are subtracted shows several discrete bands in the region 6.9-9.5 eV. A Rydberg state (1)B(2)(n,4p(z)) lying below Rydberg state (1)A(1)(n,4p(y)) is confirmed, and the C-H symmetric stretching (nu(1)) and CH out-of-plane bending (nu(4)) modes for a transition (1)B(2)(n,4s)-X (1)A(1) are identified. New transitions to Rydberg states associated with excitation to 5s-11s, 5p(z)-7p(z), 5p(y)-7p(y), and 3d-6d are identified based on quantum defects and comparison with vertical excitation energies predicted with time-dependent density-functional theory (TD-DFT) and outer-valence Green's-function (OVGF) methods. For lower excited states predictions from these TD-DFT6-31+G calculations agree satisfactorily with experimental values, but for higher Rydberg states the OVGF method using aug-cc-pVTZ basis set augmented with extra diffuse functions yields more accurate predictions of excitation energies.  相似文献   

18.
The inner valence electron spectrum of the CS2 molecule has been investigated in the binding energy range between 18.6 and 26.3 eV using synchrotron radiation for ionisation. Photon energies in the range from 67 to about 167 eV have been used, with particular focus on 166.70, 166.89 and 167.09 eV for which S2p electrons are resonantly transferred into Rydberg orbitals close to the ionisation threshold. From there, autoionisation takes the molecule into various cationic states characterized by two valence holes and a Rydberg spectator electron. Many new bands are observed which contain vibrational progressions with spacings around 120 meV in most cases. These are assigned as excitations of the totally symmetric stretching ν1 mode in the cationic state. The new bands reflect states in the cation that are close to the electronic states of the dication and assignments are made by comparison to double ionisation electron spectra.  相似文献   

19.
A study of excited states of the NO dimer is carried out at 7.1-8.2 eV excitation energies. Photoexcitation is achieved by two-photon absorption at 300-345 nm followed by (NO)(2) dissociation and detection of electronically excited products, mostly in n=3 Rydberg states of NO. Photoelectron imaging is used as a tool to identify product electronic states by using non-state-selective ionization. Photofragment ion imaging is used to characterize product translational energy and angular distributions. Evidence for production of NO(A (2)Sigma(+)), NO(C (2)Pi), and NO(D (2)Sigma(+)) Rydberg states of NO, as well as the valence NO(B (2)Pi) state, is obtained. On the basis of product translational energy and angular distributions, it is possible to characterize the excited state(s) accessed in this region, which must possess a significant Rydberg character.  相似文献   

20.
We have observed and characterized two new double Rydberg anions N6H19- and N7H22- through their anion photoelectron spectra. The vertical detachment energies of these anions were found to be 0.443 and 0.438 eV, respectively. In addition, for three of the seven double Rydberg anions now known, we measured photodetachment transitions not only to the ground electronic states of their corresponding neutral Rydberg radicals but also to their first electronically excited states. In each spectrum, the energy spacing between the resulting peaks provided the ground-to-first electronically excited-state transition energy for the double Rydberg anion's corresponding neutral Rydberg radical. For the radicals, N4H13, N5H16, and N6H19, the spacings were found to be 0.83, 0.70, and 0.67 eV, respectively. These values are in excellent agreement with ground-to-first excited-state transition energies measured in absorption for the same neutral Rydberg radicals by Fuke and co-workers [Eur. Phys. J. D 9, 309 (1999); J. Phys. Chem. A 106, 5242 (2002).] The duplication of this neutral Rydberg property by photodetachment of double Rydberg anions further confirms that double Rydberg anions are indeed the negative ions of their corresponding neutral Rydberg molecules and cluster-like systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号