首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Direct-contact condensation is studied by injecting steam downward through a pipe and out of the submerged end into a pool of subcooled water. The motion of the steam/water interface is recorded by high-speed movies and systematically classified, based on the injection rate and the pool subcooling. The resulting regime map shows the existence of three main condensation modes as the injection rate is reduced: At a high rate of steam injection (>125 kg/m2s) an oscillatory jet is observed. At a low rate of injection (<50 kg/m2s) a phenomenon called “steam chugging,” in which the pool water periodically enters the injection pipe, is observed. At intermediate injection rates an oscillatory bubble exists continuously at the pipe exit.  相似文献   

2.
The instability-governed entrainment rate of the lower surface of a subcooled water column accelerated upwards by an expanding steam mass is measured. It is found that the entrainment rate is approximately proportional to the fourth root of the acceleration. This would be the case if the characteristic length scale in the late stages of Taylor instability were governed by linear instability theory. In addition to the linear displacement measurements, the steam pressure in the lower driver section was monitored as a function of time. Estimates of the concentration, radius and age distribution of the entrained droplet population were made by modeling the bubble-and-spike breakup into discrete droplets. This allows the steam condensation rate, and hence the steam pressure, at each instant of time to be computed. This is compared with the observed steam pressure history. Reasonable agreement is found. One can thus estimate the reduction in work potential in the case of a steam explosion in the lower plenum of a pressurized-water nuclear reactor.  相似文献   

3.
Contact of steam and subcooled water in a pipe or a pressurized vessel leads to intensive condensation accompanied by a pressure drop in the volume of condensing steam and an acceleration of the surrounding water mass towards the steam volume, which can result in a severe water hammer and plant damage. This phenomenon is known as the condensation induced water hammer (CIWH). A one-fluid model is developed for the prediction of pressure surges during CIWH. It is shown that the reliable prediction of pressure surges strongly depends on the calculation of the condensation rate, transient friction and the water column–steam interface tracking. Due to the lack of the CIWH condensation models, a new approach is derived. The one-fluid model predictions of pressure surges are compared with available measured data from a CIWH experimental facility and acceptable agreements are obtained. In addition, the ability of the developed model to simulate the water cannon event, which takes place during the steam drainage into the pool of subcooled water, is demonstrated. Experimentally observed considerable scattering of test data under the same conditions is related to the condensation rate and its dependence on the entrained droplets–steam interfacial area concentration in the vicinity of the water column head.  相似文献   

4.
Experiments have been carried out to determine the water depth required to entrain a given amount of air with a given circulating water flow discharging through a vertical pipe set in the flat bottom of a vessel. The circulation angle, , between the radial direction and the velocity vector far from discharge pipe was set at 0°, 10°, 30° or 60°.

It is shown that results are not dependent upon the diameter of the offtake pipe, if that is sufficiently small, and results are then expressed either as a dimensionless water depth vs a dimensionless ratio of the flow rates of the two phases or as a dimensionless flow rate of one phase vs the dimensionless flow rate of the other phase. An approximate theory describes trends in the data and is mostly in good quantitative agreement.

The results are used to examine the work of others on the entrainment of air or steam by water flowing along the bottom of a horizontal pipe into a small bottom offtake and the similar entrainment of water by air or steam flowing into a small top offtake. These systems occur in certain PWR loss of coolant accidents.  相似文献   


5.
Results of a transient analysis predicting the general characteristics of steam chugging compare well with the results of two large scale experiments: GKM II, test 21 and GKSS, test 16. Predicted fundamental periods of chugging are within 5 and 16 per cent of the respective experimental values. The results of the analysis include effects of air in the drywell, momentum loss and heat transfer in the condensation pipe, direct contact condensation heat transfer at the gas-water interface and momentum and heat transfer in the wetwell water pool. Bubble shape is calculated in two-dimensional cylindrical coordinates.Required inputs to the analysis include the geometry, initial conditions and constants to determine both the steam inlet mass flowrate to the drywell as a function of time and conduction heat transfer through the wall of the condensation pipe. There are no arbitrary free parameters which must be specified to predict specific experiments. Rather, the analysis is based on fundamental physical phenomena, experimental coefficients documented for general heat transfer and fluid mechanics characteristics and standard analytical techniques.The random nature of steam chugging observed in some experiments is partially explained by predicted regimes of chugging and changes in the maximum extent of a bubble below the condensation pipe exit during each regime.  相似文献   

6.
In this paper, the hydrodynamics of a bubble formed during transient injection of air through a tube submerged in a pool of water has been studied. The experiments were performed by injecting air through vertical tubes varying in diameter from 0.9 to 9.5 cm and located in the middle of a 45 cm dia. and 120 cm high plexiglas chamber. The plexiglas chamber was partly filled with water and was open at the top to the outside. Data for bubble growth and vent line pressure histories are obtained under different upstream pressure conditions. Effect of presence of an orifice in the vent line on bubble growth has also been investigated.A theoretical model describing the bubble growth at the exit of a vent pipe submerged in a pool of water is developed. Predictions of bubble radius, line static pressure and uplift on the bottom of the test chamber have been made and are found to compare well with the data. Insertion of an orifice in the pipe line between the solenoid valve and the vent exit has been found to inhibit the bubble expansion as well as alter the bubble oscillation characteristics.  相似文献   

7.
An original experimental investigation of heat transfer with steam condensation on a surface of a horizontal cooled tube immersed in a bubbling layer was carried out. A copper test section 16 mm in diameter and 285 mm in length was placed in a bubbling column 295 mm in diameter. Experiments were made under a pressure of 0.72-3.8 MPa with volume steam content 0-0.18, steam superficial velocities 0-0.18 m/s, and liquid-wall temperature difference 38–106 K. The heat transfer process in a bubbling layer under high pressures is shown to be of considerably intensity; with moderate values of steam content heat transfer coefficients reach 10–12 kW/(m2·K). The use of the known correlations assumed for the case of air bubbling under atmospheric pressure results in systematically underestimating heat transfer by 30–80%. Data were obtained on heat transfer with film condensation of steam and natural convection of subcooled water at high temperature differences outside the range investigated earlier. Experimental data table is appended.  相似文献   

8.
Measurements of entrainment are presented for air and water flowing in horizontal 2.54 and 5.08 cm pipelines. After the initiation of atomization, entrainment increases with the third power of the gas velocity. At very high gas velocities a fully entrained oendition in reached for which further increases in the gas velocity do not cause a decrease in the flow rate of the wall film. Gas density bas a small effect provided comparisons are made at the same gas velocity rather than at the same mass flowrate. The results are interpreted by asauming that the rate of deposition of droplets on the wall film varies linearly with the concentration of droplets and that the rate of atomization of the wall film varies linearly with its flow rate.  相似文献   

9.
Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air–water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam–water annular flow conditions. In each experiment, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using the liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant [Sawant, P.H., Ishii, M., Mori, M., 2008. Droplet entrainment correlation in vertical upward co-current annular two-phase flow. Nucl. Eng. Des. 238 (6), 1342–1352] for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible.Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air–water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air–water, helium–water and air–genklene experimental data measured by Willetts [Willetts, I.P., 1987. Non-aqueous annular two-phase flow. D.Phil. Thesis, University of Oxford]. However, comparison of the correlations with the steam–water data available in literature showed significant discrepancies. It is proposed that these discrepancies might have been caused due to the inadequacy of the liquid film extraction method used to measure the entrainment fraction or due to the change in mechanism of entrainment under high liquid flow conditions.  相似文献   

10.
The heat transfer characteristics of the condensation of ethanol–water binary vapor on vertical tubes with the pipe diameter of 10 mm were investigated experimentally. The results showed that, with the change of the vapor-to-surface temperature difference, the condensation heat transfer coefficients revealed nonlinear characteristics with peak values under a wide variety of operating conditions. With the increasing pressure or velocity of the vapor, the heat transfer coefficients increased subsequently. The effect of vapor pressure or velocity on heat transfer coefficients reduced with the increasing ethanol mass fraction. It was noteworthy that, under low ethanol mass fractions (0.5–2%), the heat transfer coefficients augmented significantly, were about 5–8 times greater than that of pure steam. The comparison for different test blocks indicated that the condensation heat transfer coefficients for different pipe diameters were about the same value under the same operating condition. Significant heat transfer enhancement by Marangoni condensation could be achieved for full range of pipe diameter used in industrial condensers.  相似文献   

11.
The entrainment of soluble (KI, CsI) and non-soluble (Al2O3) substances through droplets, which are produced by disintegrating steam bubbles at the surface of a boiling water pool, is determined in a pilot-scale facility. Integral measurements are conducted at steady-state conditions in an atmosphere of either pure steam or an air–steam mixture. The ratio of the entrained liquid mass flow and the gas mass flow through the pool, the entrainment factor, is determined for air–steam ratios between 0 and 0.47 kg/kg in the gas atmosphere and at constant total pressures between 2 and 6 bar. The influence of the vertical temperature profile in the gas atmosphere on the convective velocity field is demonstrated by phase Doppler anemometry and particle image velocimetry measurements at a location 2.1 m above the pool surface. The influences of nucleation and natural convection are demonstrated during slow de-pressurization of the facility at rates below 420 Pa/s.  相似文献   

12.
The condensation of supersonic steam jet submerged in the quiescent subcooled water was investigated experimentally. The results indicated that the shape of steam plume was controlled by the steam exit pressure and water temperature. Six different shapes of steam plume were observed under the present test conditions. Their distribution as a function of the steam exit pressures and water temperatures was given. As the steam mass velocity and water temperature increase, the measured maximum expansion ratio and dimensionless penetration length of steam plume were in the ranges of 1.08–1.95 and 3.05–13.15, respectively. The average heat transfer coefficient of supersonic steam jet condensation was found to be in the range of 0.63–3.44 MW/m2K. An analytical model of steam plume was found and the correlations to predict the maximum expansion ratio, dimensionless penetration length and average heat transfer coefficient were also investigated.  相似文献   

13.
The purpose of this paper is to provide a database suitable for the validation of computer codes for condenser design purposes. It is too extensive to publish in full but copies of all data tables are available direct from the author. The test condenser is of industrial scale, (0.483 m diameter and 2.438 m between tubeplates), and design, (TEMA E), and should therefore be of particular relevance for this purpose. The important condition that all the individual resistances to heat and mass transfer should be controlling in some part of the dataset is fulfilled, by covering condensation of steam and steam–air mixtures, methanol and isopropanol and their mixtures with water, and hydrocarbon mixtures, commercial hexane and methylcyclohexane-toluene. Care is taken to ensure that the condenser is operating in a loaded condition with an appreciable vent flow to a knockout condenser. Data are reported at atmospheric pressure and at reduced pressures down to approximately 0.1 bar. Further the work includes measurements of the pressure and temperature profiles not only in condensation but with single-phase flow of air and two-phase flow of air–water mixtures in the stratified and spray flow regimes. The data have been analysed by standard methods available in the literature and specific conclusions are reached with respect to the performance of these methods. A particular feature is the application of rigorous models to predict multicomponent mass transfer. Care has been taken to describe the measurement techniques, their reliability and that of the dataset itself in consequence. The conclusions of the work are related to current industrial design practice and some needs for modification of current design methods are noted.  相似文献   

14.
It is a well known effect that accumulation of non condensable gas causes a high heat transfer resistance during direct contact condensation in binary steam- nitrogen mixtures. But especially with high pressures and low water temperatures a second effect reduces heat transfer additionally. Fog forms within in the steam-nitrogen boundary layer and the steam condenses at the water droplets of the fog layer and reaches the cooling water interface no longer. The convective mass transfer to the cooling water interface diminishes and no heating up of the water layer takes place. This effect was observed with experiments at stratified two phase flow run with pressures up to 2.0 MPa. The interface temperature has proved to be the most important parameter for fog formation. The paper explains this effect by means of film theory. It offers correlations to quantify the effect and to calculate the minimum interface temperature to avoid spontaneous condensation. Received on 29 May 1998  相似文献   

15.
In this paper, condensation heat transfer characteristics of ethanol–water vapor mixtures on a vertical mini-vertical tube with 1.221 mm outside diameter were investigated experimentally. The experiments were performed at different velocities and pressures over a wide range of ethanol mass fractions in vapor. The test results indicated that, with respect to the change of the vapor-to-surface temperature difference, the condensation curves of the heat transfer coefficients revealed nonlinear characteristics, and had peak values. At 2 % ethanol mass fraction in vapor, the condensation heat transfer coefficient value of the ethanol–water vapor mixture was found to have a maximum heat transfer coefficient of 50 kW m?2 K?1, which was 3–4 times than that of pure steam. The condensation heat transfer coefficients decreased with increased ethanol mass fraction in vapor. The vapor pressure and vapor velocity had a positive effect on the condensation heat transfer coefficients of ethanol–water vapor mixtures.  相似文献   

16.
This paper presents results from seven experimental facilities on the co-current flow of air and water in downward sloping pipes. As a function of the air flow rate, pipe diameter and pipe slope, the required water discharge to prevent air accumulation was determined. In case the water discharge was less than the required water discharge, the air accumulation and additional gas pocket head loss were measured. Results show that volumetric air discharge as small as 0.1% of the water discharge accumulate in a downward sloping section. The experimental data cover all four flow regimes of water-driven air transport: stratified, blow-back, plug and dispersed bubble flow. The analysis of the experimental results shows that different dimensionless numbers characterise certain flow regimes. The pipe Froude number determines the transition from blow-back to plug flow. The gas pocket head loss in the blow-back flow regime follows a pipe Weber number scaling. A numerical model for the prediction of the air discharge as a function of the relevant system parameters is proposed. The novelty of this paper is the presentation of experimental data and a numerical model that cover all flow regimes on air transport by flowing water in downward inclined pipes.  相似文献   

17.
This study aims to examine the relationship between thermal stratification and flow patterns in a steam-quenching suppression pool using particle image velocimetry. Thermal stratification was experimentally evaluated in a depressurized water pool under different steam mass flux conditions. The time evolution of the temperature profile of the suppression pool was presented with the variation of condensation regimes, and steam condensation processes were visualized using a high-speed camera. The thermal stratification condition was classified into full mixing, gradual thermal stratification, and developed thermal stratification. It was found that the condition was determined by the flow patterns depending on the force balance between buoyancy and momentum. The force balance affected both the condensation regime and the flow pattern, and hence, the flow pattern was changed with the condensation regime. However, the force balance had a sensitive influence on the flow in the pool; therefore, distinct flow patterns were observed even in the same condensation regime.  相似文献   

18.
 Horizontal turbulent water vapour (steam) jets were discharged into ambient air from a circular convergent nozzle under unchoked/choked and saturated/superheated nozzle exit conditions, resulting in two-phase (liquid and vapour), two-fluid (air and water) condensing free jets. Flow properties and mixing characteristics have been measured with the aid of an isokinetic sampling probe arrangement. Radial and axial profiles of air and steam mass flow rates and mass fractions were measured from which entrainment, centreline decay and half-width spreading rates were calculated and compared with data from the literature. Overall, the mixing characteristics of the condensing jets are very similar to those of non-condensing jets extensively reported in the literature. Received: 30 September 1996 / Accepted: 19 May 1997  相似文献   

19.
Unstable direct contact condensation called ``Chugging'' that occurs in certain conditions in the pressure suppression pool of Primary Containment Vessel of Boiling Water Reactors (BWRs) was studied experimentally. The mechanisms of every phase of the chugging was described, and experimental results useful for the development and validation of more accurate CFD models were provided. The experiment was conducted with a transparent pool and a transparent polycarbonate pipe or a stainless steel pipe with inner diameter of 27 mm under the conditions of the steam mass flux of 5.5–19.5 kg/m2s and the pool temperature of 19–46.5 °C. Pressure pulses were measured and synchronized with a high speed video camera for images acquisition. It was identified that the bubble implosion occurred while the pressure in the bubble quickly decreased. This condition might establish instability in the interfacial area which grew abruptly causing the implosion. Moreover the transparent apparatus allowed to interpret and relate internal condensations, generating pressure spikes of around 1.2 MPa because of the condensation-induced water hammer. Finally, the chugging condensation regime map was created from the experimental data.  相似文献   

20.
Steam jet pump is the best choice for pumping radioactive and hazardous liquids because it has no moving parts and so no maintenance. However, the physics involved is highly complicated because of the mass, momentum and energy transfer between the phases involved. In this study the characteristics of SJP are studied both experimentally and numerically to pump water using saturated steam. In the experimental study the static pressure, temperature along the length of the steam jet pump and the steam and water flow rates are recorded. The three dimensional numerical study is carried out using the Eulerian two-phase flow model of Fluent 6.3 software and the direct-contact condensation model developed previously. The experimental and CFD results, of axial static pressure and temperature, match closely with each other. The mass ratio and suction lift are calculated from experimental data and it is observed that the mass ratio varies from 10 to 62 and the maximum value of suction lift is 2.12 m under the conditions of the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号