首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new theoretical model has been developed to explain the behavior of transverse particle transport in turbulent flow of a dilute two-phase suspension due to turbulent diffusion. This model is based on the ability of a particle to respond to surrounding fluid motion and depends on particle size and density relative to the carrier fluid, the fractional variation in particle concentration in the transverse direction as well as the existing turbulence structure of the surrounding fluid. The model developed in this investigation has been formulated by dividing the transverse fluid velocity, as seen by a particular particle, into two superimposed components representing, respectively, the transverse turbulent fluid fluctuations and an apparent transverse local fluid drifting velocity due to the effect on the transverse oscillatory component of fluid motion by the transverse concentration distribution of particles. A subsequent paper will show that the theory (together with other new results on the concentration effects on particle drag and lift and fluid turbulence properties) can help to explain the phenomena measured previously.  相似文献   

2.
An improved drag force coefficient of gas-particle interaction based on the traditional Wen’s 1966 model is proposed. In this model, a two-stage continuous function is used to correct the discontinuous switch when porosity less than 0.2. Using this proposed correlation and the Wen’s 1966 model, a gas-particle kinetic energy and particle temperature model is developed to predict the hydrodynamic characteristics in backward-facing step gas-particle two-phase turbulent flows. Numerically results showed that they are in good agreement with experiment measurements and presented model are better due to a improvement of momentum transport between gas and particle phases. Particle dispersions take on the distinctively anisotropic behaviors at every directions and gas phase fluctuation velocity are about twice larger than particle phases. Particle phase has a unique transportation mechanism and completely different from the gas phase due to different density. Furthermore, the correlation values of axial–axial gas-particle are always greater than the radial–radial values at fully flow regions. The gas-particle two-phase interactions will make influence on two-phase turbulent flow behaviors.  相似文献   

3.
Existing knowledge on particle deposition rates on walls from turbulent pipe and channel flows is summarized and it is shown that discrepancies exist between experimental and theoretical findings. To contribute to the existing experimental information, laser Doppler measurements are reported of the flow field of a glass particle-air two-phase flow. The results reveal certain seemingly peculiar behaviors of the particles which obviously defy the predictions of the conventional analyses of turbulent two-phase suspension flows.In an accompanying approximate, yet pragmatic theoretical approach, an attempt is made to find a rational basis for the explanation of these experimentally observed particle behaviors. It is shown for the particles in the present study, there exists a limiting size above which their response to the agitation of the fluctuating motion of the surrounding fluid could be treated as if the flow were laminar. On this rational basis, these experimentally observed particle behaviors can then be qualitatively explained by the existing theory of particle excursion in a laminar shear flow field.Reported also is a suggestion to extend the present analysis to a dispersion of particles of multiple sizes.  相似文献   

4.
Friction factors and velocity profiles in turbulent drag reduction can be compared to Newtonian fluid turbulence when the shear viscosity at the wall shear rate is used for the Reynolds number and the local shear viscosity is used for the non-dimensional wall distance. On this basis, an apparent maximum drag reduction asymptote is found which is independent of Reynolds number and type of drag reducing additive. However, no shear viscosity is able to account for the difference between the measured Reynolds stress and the Reynolds stress calculated from the mean velocity profile (the Reynolds stress deficit). If the appropriate local viscosity to use with the velocity fluctuation correlations includes an elongational component, the problem can be resolved. Taking the maximum drag reduction asymptote as a non-Newtonian flow, with this effective viscosity, leads to agreement with the concept of an asymptote only when the solvent viscosity is used in the non-dimensional wall distance.  相似文献   

5.
A technique is presented for the simultaneous measurement of the local number and velocity probability densities of a dilute two-phase suspension which has a distribution of particle sizes and a predominate direction of flow orientation such as in the cases of pipe and boundary-layer flows. It is shown that by a suitable scheme of discrimination on the amplitude as well as the residence time and frequency of the individual Laser-Doppler bursts, one can obtain the statistics on the size number density distribution and, for each size range, velocity distribution of the particulate phase together with the velocity probability distribution of the fluid phase.Results have been obtained for experiments conducted on a laminar uniform flow and a turbulent shear flow of a dilute glass particle-water suspension having a particle size distribution. Calibration needed for the scheme was accomplished by analyzing particle size and number density distribution data obtained from a Coulter particle sizing counter on a sample taken with an isokinetic probe.  相似文献   

6.
The results of numerically modeling two-dimensional two-phase flow of the “gas-solid particles” type in a vertical turbulent jet are presented for three cases of its configuration, namely, descending, ascending, and without account of gravity. Both flow phases are modeled on the basis of the Navier-Stokes equations averaged within the framework of the Reynolds approximation and closed by an extended k-? turbulence model. The averaged two-phase flow parameters (particle and gas velocities, particle concentration, turbulent kinetic energy, and its dissipation) are described using the model of mutually-penetrating continua. The model developed allows for both the direct effect of turbulence on the motion of disperse-phase particles and the inverse effect of the particles on turbulence leading to either an increase or a decrease in the turbulent kinetic energy of the gas. The model takes account for gravity, viscous drag, and the Saffman lift. The system of equations is solved using a difference method. The calculated results are in good agreement with the corresponding experimental data which confirms the effect of solid particles on the mean and turbulent characteristics of gas jets.  相似文献   

7.
In this article a parametric study based on a balance between viscous drag and restoring Brownian forces is used in order to construct a nonlinear dumbbell model with a finite spring and a drag correction for a dilute polymer solution. The constitutive equations used are reasonable approximation for describing flows of very dilute polymer solutions such as those used in turbulent drag reduction. We investigate the response of an elastic liquid under extensional flows in order to explore the roles of a stress anisotropy and of elasticity in strong flows. It is found that for low Reynolds numbers, the extensional viscosity of a dilute polymer solution is governed by two parameters: a Deborah number representing the importance of the elasticity on the flow and the macromolecule extensibility that accounts for the viscous anisotropic effects caused by the macromolecule orientation. Two different asymptotic regimes are described.The first corresponds to an elastic limit in which the extensional viscosity is a function of the Deborah number and the particle volume fraction. The second is an anisotropic regime with the extensional viscosity independent of Deborah number but strongly dependent on macromolecule aspect ratio. The analysis may explain from a phenomenological point of view why few ppms of macromolecules of high molecule weight or a small volume fraction of long fibres produce important attenuation of the pressure drop in turbulent flows. On the basis of our analysis it is seen that the anisotropic limit of the extensional viscosity caused by extended polymers under strong flows should play a key role in the attenuation of flow instability and in the mechanism of drag reduction by polymer additives.  相似文献   

8.
In this study, a Eulerian-Eulerian two-fluid model combined with the kinetic theory of granular flow is adopted to simulate power-law fluid–solid two-phase flow in the fluidized bed. Two new power-law liquid–solid drag models are proposed based on the rheological equation of power-law fluid and pressure drop. One called model A is a modified drag model considering tortuosity of flow channel and ratio of the throat to pore, and the other called model B is a blending drag model combining drag coefficients of high and low particle concentrations. Predictions are compared with experimental data measured by Lali et al., where the computed porosities from model B are closer to the measured data than other models. Furthermore, the predicted pressure drop rises as liquid velocity increases, while it decreases with the increase of particle size. Simulation results indicate that the increases of consistency coefficient and flow behavior index lead to the decrease of drag coefficient, and particle concentration, granular temperature, granular pressure, and granular viscosity go down accordingly.  相似文献   

9.
Turbulent Couette flow between two circular cylinders has been used for drag reduction experiments using surfactants. In the experiments presented here, only the outer cylinder rotates, the inner cylinder remains at rest and accurate measurements of the torque at the inner cylinder are measured. Water is used as a reference fluid. A drag reducing surfactant called Arquad S-50 (Akzo Nobel Surface Chemistry LLC, Chicago, Ill., USA) (5 mM)+NaSal (12.5 mM) was used as the drag reduction agent. This surfactant can reduce the drag up to 70% (a Reynolds number of about 70,000–150,000) as measured by pressure drop in a pipe flow. Experiments in Couette flow also show drag reduction in the turbulent range. Two arrangements were used, (1) one small trip-wire on the inner cylinder, and (2) four larger trip-wires on the outer cylinder. These trips reduce the critical Reynolds number for transition from laminar to turbulent flow. In case (1), we obtained 18% drag reduction at 5,000<Re<15,000 and in case (2), we obtained an average reduction of about 20% at 2,000<Re<10,000, increasing up to 30% at Re=15,000. The paper also discusses two important problems. First, the shear rate is not constant in the radial gap in circular Couette flow. For non-Newtonian fluids, where the molecular viscosity is a function of the shear rate, this effect must be considered. Second, which viscosity should be used in the Reynolds number? For pipe flow measurements, most authors use the viscosity of the solvent (generally water and Newtonian). For measurements in the Couette flow, we use a different approach, which is described in this paper. We conclude that Couette flow is a useful method for drag reduction investigations. Its advantage is the much smaller geometry in comparison to those of conventional test facilities such as wind tunnels, water, or oil channels or in tubes.  相似文献   

10.
ANIMPLICTALGORITHMOFTHINLAYEREQUATIONSiNVISCOUS,TRANSONIC,TWO-PHASENOZZLEFLOWHeHong-qing(何洪庆)HouXiao(侯晓)CaiTi-min(蔡体敏)WuXing-...  相似文献   

11.
微纳结构超疏水表面的湍流减阻机理研究   总被引:2,自引:0,他引:2  
超疏水表面的优异性质使其在现代生活和工业生产中具有十分广泛的潜在应用价值. 本文采用了碳纳米管缠绕技术和聚氟硅氧烷疏水化处理方法制备了具有二级微纳米结构的超疏水表面. 测量了由该超疏水表面构建的槽道中的流动压降,将其与普通表面构建的槽道内的流动压降进行比较,发现在层流情况下,流动阻力减小最多达到了22.8%. 在湍流的情况下,超疏水表面的减阻比例约为53.3%,减阻效果比层流更加明显.利用PIV (particle image velocimetry) 技术测量了具有超疏水表面的槽道内的速度场,通过超疏水表面速度滑移和湍动脉动场信息,分析了湍流减阻效果比层流更加明显的物理机制.  相似文献   

12.
A model of laminar flow of a highly concentrated suspension is proposed. The model includes the equation of motion for the mixture as a whole and the transport equation for the particle concentration, taking into account a phase slip velocity. The suspension is treated as a Newtonian fluid with an effective viscosity depending on the local particle concentration. The pressure of the solid phase induced by particle-particle interactions and the hydrodynamic drag force with account of the hindering effect are described using empirical formulas. The partial-slip boundary condition for the mixture velocity on the wall models the formation of a slip layer near the wall. The model is validated against experimental data for rotational Couette flow, a plane-channel flow with neutrally buoyant particles, and a fully developed flow with heavy particles in a horizontal pipe. Based on the comparison with the experimental data, it is shown that the model predicts well the dependence of the pressure difference on the mixture velocity and satisfactorily describes the dependence of the delivered particle concentration on the flow velocity.  相似文献   

13.
A matching algorithm based on self-organizing map (SOM) neural network is proposed for tracking rod-like particles in 2D optical measurements of dispersed two-phase flows. It is verified by both synthetic images of elongated particles mimicking 2D suspension flows and direct numerical simulations-based results of prolate particles dispersed in a turbulent channel flow. Furthermore, the potential benefit of this algorithm is evaluated by applying it to the experimental data of rod-like fibers tracking in wall turbulence. The study of the behavior of elongated particles suspended in turbulent flows has a practical importance and covers a wide range of applications in engineering and science. In experimental approach, particle tracking velocimetry of the dispersed phase has a key role together with particle image velocimetry of the carrier phase to obtain the velocities of both phases. The essential parts of particle tracking are to identify and match corresponding particles correctly in consecutive images. The present study is focused on the development of an algorithm for pairing non-spherical particles that have one major symmetry axis. The novel idea in the algorithm is to take the orientation of the particles into account for matching in addition to their positions. The method used is based on the SOM neural network that finds the most likely matching link in images on the basis of feature extraction and clustering. The fundamental concept is finding corresponding particles in the images with the nearest characteristics: position and orientation. The most effective aspect of this two-frame matching algorithm is that it does not require any preliminary knowledge of neither the flow field nor the particle behavior. Furthermore, using one additional characteristic of the non-spherical particles, namely their orientation, in addition to its coordinate vector, the pairing is improved both for more reliable matching at higher concentrations of dispersed particles and for higher robustness against loss of particle pairs between image frames.  相似文献   

14.
A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth‐limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier–Stokes equations is solved, in which a drag‐based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub‐particle‐scale model is applied to account for the effect of turbulence. The sub‐particle‐scale model is constructed based on the mixing‐length assumption rather than the standard Smagorinsky approach to compute the eddy‐viscosity. A robust in/out‐flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd  相似文献   

15.
The present work aims to investigate numerically the flowfield and heat transfer process in gas-solid suspension in a vertical pneumatic conveying pipe. The Eulerian-Lagrangian model is used to simulate the flow of the two-phases. The gas phase is simulated based on Reynolds Average Navier-Stokes equations (RANS) with low Reynolds number k-ε model, while particle tracking procedure is used for the solid phase. An anisotropic model is used to calculate the Reynolds stresses and the turbulent Prandtl number is calculated as a function of the turbulent viscosity. The model takes into account the lift and drag forces and the effect of particle rotation as well as the particles dispersion by turbulence effect. The effects of inter-particles collisions and turbulence modulation by the solid particles, i.e. four-way coupling, are also included in the model. Comparisons between different models for turbulence modulation with experimental data are carried out to select the best model. The model is validated against published experimental data for velocities of the two phases, turbulence intensity, solids concentration, pressure drop, heat transfer rates and Nusselt number distribution. The comparisons indicate that the present model is able to predict the complex interaction between the two phases in non-isothermal gas-solid flow in the tested range. The results indicate that the particle-particle collision, turbulence dispersion and lift force play a key role in the concentration distribution. In addition, the heat transfer rate increases as the mass loading ratio increases and Nusselt number increases as the pipe diameter increases.  相似文献   

16.
Further development of an energy-minimization multiscale modeling approach to simulating two-phase flow under turbulent conditions that considers the size distribution of mesoscale structures, i.e. bubbles and clusters, is presented. User-defined values of minimum and maximum cluster or bubble diameters were specified. A uniform size distribution was first considered as a test case, in which the drag force comprised contributions from each size group. The mathematical form of the objective function describing the energy for suspension and transport was not altered. The heterogeneity index of this new drag modification was then used to simulate pilot-scale circulating fluidized-bed risers involving Geldart group A particles. The results were validated against available experimental data. The model is capable of capturing both axial and radial profiles of flow-field variables.  相似文献   

17.
The particle migration effects and fluid–particle interactions occurring in the flow of highly concentrated fluid–particle suspension in a spatially modulated channel have been investigated numerically using a finite volume method. The mathematical model is based on the momentum and continuity equations for the suspension flow and a constitutive equation accounting for the effects of shear‐induced particle migration in concentrated suspensions. The model couples a Newtonian stress/shear rate relationship with a shear‐induced migration model of the suspended particles in which the local effective viscosity is dependent on the local volume fraction of solids. The numerical procedure employs finite volume method and the formulation is based on diffuse‐flux model. Semi‐implicit method for pressure linked equations has been used to solve the resulting governing equations along with appropriate boundary conditions. The numerical results are validated with the analytical expressions for concentrated suspension flow in a plane channel. The results demonstrate strong particle migration towards the centre of the channel and an increasing blunting of velocity profiles with increase in initial particle concentration. In the case of a stenosed channel, the particle concentration is lowest at the site of maximum constriction, whereas a strong accumulation of particles is observed in the recirculation zone downstream of the stenosis. The numerical procedure applied to investigate the effects of concentrated suspension flow in a wavy passage shows that the solid particles migrate from regions of high shear rate to low shear rate with low velocities and this phenomenon is strongly influenced by Reynolds numbers and initial particle concentration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
An empirical correlation for the turbulence viscosity in two-phase flow is developed, based on the assumption that the fluctuations of the turbulent velocity may be divided into two components: one due to the momentum exchange of the liquid phase, the other due to the movement of the dispersed phase. The reliability of the correlation is checked against measurements from various sources, showing a standard deviation of 22 per cent.  相似文献   

19.
A one-dimensional model for two-phase flow in packed particle beds is presented. Compared with earlier models, the improved model takes into account the effect of interfacial drag forces between liquid and gas, which are of considerable influence in beds of coarse particles. The model is based on the momentum equations for separated flow, which are closed by empirical relations for the wall shear stress and the interfacial drag. The model is applied to the situation of a one-component two-phase flow in an internally heated bed of uniform spherical particles. An increased dryout heat flux is predicted if liquid enters the bed through the bottom.  相似文献   

20.
基于滑移理论的超疏水表面减阻性能分析   总被引:2,自引:2,他引:0  
采用滑移理论计算和数值模拟方法研究超疏水表面的减阻性能.层流流动状态的数值模拟和理论计算结果的一致性较好,并可证明滑移速度与通道内流体速度之比与无量纲压降比的数量级相当;湍流状态的数值仿真结果表明,在目前可实现的滑移速度范围内,超疏水表面对水下航行器的流体阻力影响不显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号